Inverse functions and existence principles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Each one of six general existence principles (of compactness (the extreme value theorem), completeness (the Newton method or the modified Newton method), topology (Brouwer's fixed point theorem), homotopy (on contractions of a sphere to its center), variational analysis (Ekeland's principle), and monotonicity (the Minty–Browder theorem)) is shown to lead to the inverse function theorem, each one giving some novel insight. There are differences in assumptions and algorithmic properties; some of the propositions have been constructed specially for this paper. Simple proofs of the last two principles are included. The proof by compactness is shorter and simpler than the shortest and simplest known proof, that by completion. This gives a very short self-contained proof of the Lagrange multiplier rule, which depends only on optimization methods. The proofs are of independent interest and are intended as well to be useful in the context of the ongoing efforts to obtain new variants of methods that are based on the inverse function theorem, such as comparative statics methods.
@article{FPM_2014_19_5_a1,
     author = {J. Brinkhuis},
     title = {Inverse functions and existence principles},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a1/}
}
TY  - JOUR
AU  - J. Brinkhuis
TI  - Inverse functions and existence principles
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 35
EP  - 47
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a1/
LA  - ru
ID  - FPM_2014_19_5_a1
ER  - 
%0 Journal Article
%A J. Brinkhuis
%T Inverse functions and existence principles
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 35-47
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a1/
%G ru
%F FPM_2014_19_5_a1
J. Brinkhuis. Inverse functions and existence principles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 5, pp. 35-47. http://geodesic.mathdoc.fr/item/FPM_2014_19_5_a1/

[1] Acemoglu D., Jensen M. K., Robust Comparative Statics in Large Dynamic Economies, , 2014 http://economics.mit.edu/files/10578

[2] Borwein J. M., Lewis A. S., Convex Calculus and Nonlinear Optimization: Theory and Examples, Springer, New York, 2006 | MR

[3] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47 (1974), 324–353 | DOI | MR | Zbl

[4] Krantz S. G., Park H. R., The Implicit Function Theorem: History, Theory and Applications, Birkhäuser, Basel, 2012 | MR

[5] Milgrom P., Roberts J., “Computing Equilibria”, Am. Econ. Rev., 84 (1994), 441–459

[6] Spivak M., Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus, Westview Press, 1971