On necessary conditions for a~minimum
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 121-152
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss a general approach to necessary optimality conditions based on so called “optimality alternative” that reduces a problem with constraints to one or a sequence unconstrained problems. The power of the approach is demonstrated by proofs of a necessary optimality condition in an abstract problem with mixed (convex vs. nonconvex) structure and a new proof of Clarke's “stratified” maximum principle for optimal control of differential inclusions.
@article{FPM_2014_19_4_a4,
author = {A. D. Ioffe},
title = {On necessary conditions for a~minimum},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {121--152},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/}
}
A. D. Ioffe. On necessary conditions for a~minimum. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 121-152. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/