On necessary conditions for a~minimum
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 121-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a general approach to necessary optimality conditions based on so called “optimality alternative” that reduces a problem with constraints to one or a sequence unconstrained problems. The power of the approach is demonstrated by proofs of a necessary optimality condition in an abstract problem with mixed (convex vs. nonconvex) structure and a new proof of Clarke's “stratified” maximum principle for optimal control of differential inclusions.
@article{FPM_2014_19_4_a4,
     author = {A. D. Ioffe},
     title = {On necessary conditions for a~minimum},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--152},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/}
}
TY  - JOUR
AU  - A. D. Ioffe
TI  - On necessary conditions for a~minimum
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 121
EP  - 152
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/
LA  - ru
ID  - FPM_2014_19_4_a4
ER  - 
%0 Journal Article
%A A. D. Ioffe
%T On necessary conditions for a~minimum
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 121-152
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/
%G ru
%F FPM_2014_19_4_a4
A. D. Ioffe. On necessary conditions for a~minimum. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 121-152. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/

[1] Avakov E. R., Magaril-Ilyaev G. G., Tikhomirov V. M., “O printsipe Lagranzha dlya zadach na ekstremum pri nalichii ogranichenii”, UMN, 68:3 (2013), 5–38 | DOI | MR | Zbl

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[3] Gamkrelidze R. V., “Optimalnye skolzyaschie rezhimy”, DAN SSSR, 143 (1962), 1243–1245 | MR | Zbl

[4] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[5] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 5:3 (1965), 395–453 | MR | Zbl

[6] Ioffe A. D., “Metricheskaya regulyarnost i subdifferentsialnoe ischislenie”, UMN, 55:3 (2000), 103–162 | DOI | MR | Zbl

[7] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[8] Krotov V. F., “Metody resheniya variatsionnykh zadach na osnove dostatochnykh uslovii absolyutnogo minimuma. I”, Avtomatika i telemekhanika, 23:12 (1962), 1571–1583 ; “Методы решения вариационных задач. II. Скользящие режимы”, Автоматика и телемеханика, 24:5 (1963), 581–598 | MR | Zbl | MR | Zbl

[9] Bogolyubov N. N., “Sur quelques méthodes nouvelles dans le calcul des variations”, Ann. Math. Pure Appl. Ser. 4, 7 (1930), 249–271 | DOI

[10] Borwein J. M., Zhu J., Techniques of Variational Analysis, CMS Books Math., 20, Springer, Berlin, 2006 | DOI

[11] Clarke F. H., “A new approach to Lagrange multipliers”, Math. Oper. Res., 1 (1976), 165–174 | DOI | MR

[12] Clarke F. H., Optimization and Nonsmooth Analysis, Wiley, Interscience, 1983 | MR | Zbl

[13] Clarke F. H., Necessary Conditions in Dynamic Optimization, Mem. Amer. Math. Soc., 816, Amer. Math. Soc., 2005 | MR | Zbl

[14] Clarke F. H., Ledayev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Springer, 1998 | MR | Zbl

[15] Dontchev A. L., Rockafellar R.T., Implicit Function and Solution Mapping, Springer, 2009 | MR

[16] Ginsburg B., Ioffe A. D., “Maximum principle for general semilinear optimal control problems”, Nonsmooth Analysis and Geometric Methods in Optimal Control, eds. B. Mordukhovich, H. Sussmann, Springer, 1995, 81–110 | MR

[17] Graves L. M., “Some mapping theorems”, Duke Math. J., 17 (1950), 111–114 | DOI | MR | Zbl

[18] Halkin H., Neustadt L., “General necessary conditions for optimization problems”, Proc. Nat. Acad. Sci., 56 (1966), 1066–1071 | DOI | MR | Zbl

[19] Ioffe A. D., “Necessary and sufficient conditions for a local minimum. 1–3”, SIAM J. Control Optim., 17 (1979), 245–288 | DOI | MR

[20] Ioffe A. D., “On subdifferentiability spaces”, Ann. N.Y. Acad. Sci., 410 (1983), 107–121 | DOI | MR

[21] Ioffe A. D., “On the local surjection property”, Nonlinear Anal., 11 (1987), 565–592 | DOI | MR | Zbl

[22] Ioffe A. D., “Euler–Lagrange and Hamiltonian formalisms in dynamic optimization”, Trans. Amer. Math. Soc., 349 (1997), 2871–2900 | DOI | MR | Zbl

[23] Ioffe A. D., “Fuzzy principles and characterization of trustworthiness”, Set-Valued Analysis, 6 (1998), 265–276 | DOI | MR | Zbl

[24] Ioffe A. D., “Optimality alternative: a non-variational approach to necessary conditions”, Variational Analysis and Applications, A volume dedicated to the memory of G. Stampacchia, eds. F. Giannessi, A. Maugeri, Kluwer, 2005, 531–552 | DOI | MR

[25] Ioffe A. D., “On the general theory of subdifferentials”, Adv. Nonlinear Anal., 1 (2012), 47–120 | MR | Zbl

[26] Ioffe A. D., Rockafellar R. T., “The Euler and Weierstrass conditions for nonsmooth variational problems”, Calculus of Variations and PDEs, 4 (1996), 59–87 | DOI | MR | Zbl

[27] Lassonde M., “First order rules for nonsmooth constrained optimization”, Nonlinear Analysis. TMA, 44 (2001), 1031–1056 | DOI | MR | Zbl

[28] Loewen P. D., Optimal Control via Nonsmooth Analysis, CRM Proc. Lect. Notes, 2, Amer. Math. Soc., 1993 | MR | Zbl

[29] Neustadt L., “An abstract variational theory with applications to a broad class of optimization problems. I. General theory”, SIAM J. Control, 4 (1966), 505–527 ; “An abstract variational theory with applications to a broad class of optimization problems. II. Applications”, SIAM J. Control, 5 (1967), 90–137 | DOI | MR | Zbl | DOI | MR | Zbl

[30] Penot J. P., Calculus Without Derivatives, Grad. Texts Math., 266, Springer, 2012 | MR

[31] Robinson S. M., “Stability theory for system of inequalities. II: differentiable nonlinear systems”, SIAM J. Num. Anal., 13 (1976), 497–513 | DOI | MR | Zbl

[32] Rockafellar R. T., Wets R. J. B., Variational Analysis, Springer, 1998 | MR | Zbl

[33] Tikhomirov V. M., Fundamental Principles of the Theory of Extremal Problems, Wiley, 1982 | MR

[34] Vinter R. B., Optimal Control, Birkhäuser, 2000 | MR | Zbl

[35] Warga J., “Relaxed variational problems”, J. Math. Anal. Appl., 4 (1962), 111–128 | DOI | MR | Zbl

[36] Warga J., “Controllability and necessary conditions in unilateral problems without differentiability assumptions”, SIAM J. Control Optim., 14 (1976), 546–573 | DOI | MR | Zbl

[37] Yorke J. A., “The maximum principle and controllability of nonlinear equations”, SIAM J. Control Optim., 10 (1972), 334–338 | DOI | MR | Zbl

[38] Zhu Q. J., “The equivalence of several basic theorems for subdifferentials”, Set-Valued Analysis, 6 (1998), 171–185 | DOI | MR | Zbl