On necessary conditions for a~minimum
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 121-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a general approach to necessary optimality conditions based on so called “optimality alternative” that reduces a problem with constraints to one or a sequence unconstrained problems. The power of the approach is demonstrated by proofs of a necessary optimality condition in an abstract problem with mixed (convex vs. nonconvex) structure and a new proof of Clarke's “stratified” maximum principle for optimal control of differential inclusions.
@article{FPM_2014_19_4_a4,
     author = {A. D. Ioffe},
     title = {On necessary conditions for a~minimum},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--152},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/}
}
TY  - JOUR
AU  - A. D. Ioffe
TI  - On necessary conditions for a~minimum
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 121
EP  - 152
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/
LA  - ru
ID  - FPM_2014_19_4_a4
ER  - 
%0 Journal Article
%A A. D. Ioffe
%T On necessary conditions for a~minimum
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 121-152
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/
%G ru
%F FPM_2014_19_4_a4
A. D. Ioffe. On necessary conditions for a~minimum. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 121-152. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a4/