On integral representation of $\Gamma$-limit functionals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $\Gamma$-convergence of a sequence of integral functionals $F_n(u)$, defined on the functions $u$ from the Sobolev space $W^{1,\alpha}(\Omega)$ ($\alpha>1$), $\Omega$ is a bounded Lipschitz domain, where the integrand $f_n(x,u,\nabla u)$ depends on a function $u$ and its gradient $\nabla u$. As functions of $\xi$, the integrands $f_n(x,s,\xi)$ are convex and satisfy a two-sided power estimate on the coercivity and growth with different exponents $\alpha\beta$. Besides, the integrands $f_n(x,s,\xi)$ are equi-continuous over $s$ in some sense with respect to $n$. We prove that for the functions from $L^\infty(\Omega)\cap W^{1,\beta}(\Omega)$ the $\Gamma$-limit functional coincides with an integral functional $F(u)$ for which the integrand $f(x,s,\xi)$ is of the same class as $f_n(x,s,\xi)$.
@article{FPM_2014_19_4_a3,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {On integral representation of $\Gamma$-limit functionals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--120},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - On integral representation of $\Gamma$-limit functionals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 101
EP  - 120
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/
LA  - ru
ID  - FPM_2014_19_4_a3
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T On integral representation of $\Gamma$-limit functionals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 101-120
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/
%G ru
%F FPM_2014_19_4_a3
V. V. Zhikov; S. E. Pastukhova. On integral representation of $\Gamma$-limit functionals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/

[1] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–998 | MR | Zbl

[2] Zhikov V. V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Mat. sb., 183:8 (1992), 47–84 | MR | Zbl

[3] Zhikov V. V., “O variatsionnykh zadachakh i nelineinykh uravneniyakh s nestandartnymi usloviyami rosta”, Probl. mat. analiza, 54, 2014, 23–112

[4] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[5] Zhikov V. V., Pastukhova S. E., “Gamma-skhodimost integrantov s nestandartnymi usloviyami koertsitivnosti i rosta”, Probl. mat. analiza, 74, 2013, 85–108

[6] Zhikov V. V., Pastukhova S. E., “O gamma-skhodimosti ostsilliruyuschikh integrantov s nestandartnymi usloviyami koertsitivnosti i rosta”, Matem. sb., 205:4 (2014), 33–68 | DOI | MR | Zbl

[7] Kuratovskii L., Topologiya, v. 1, Mir, M., 1966

[8] Struve M., Variatsionnye metody, MTsNMO, M., 2010

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[10] Braides A., $\Gamma$-Convergence for Beginners, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[11] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lect. Ser. Math. Its Appl., 12, Clarendon Press, 1998 | MR | Zbl

[12] Carbone L., Sbordone C., “Some properties of $\Gamma$-limits of integral functionals”, Ann. Mat. Pura Appl. (4), 122:1 (1979), 1–60 | DOI | MR | Zbl

[13] De Giorgi E., “Sulla convergenza di alcune successioni di integrali del tipo dell' area”, Rend. Mat. Roma (6), 8 (1975), 277–294 | MR | Zbl

[14] De Giorgi E., Franzoni T.,, “Su un tipo di convergenza variazionale”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58:6 (1975), 842–850 | MR | Zbl

[15] De Giorgi E., Letta G., “Une notion generale de convergence faible des fonctions croissantes d'ensemble”, Ann. Scu. Sup. Pisa (4), 4:1 (1977), 61–99 | MR | Zbl

[16] Ioffe A. D., “On lower semicontinuity of integral functionals. I”, SIAM J. Control Optim., 15:4 (1977), 521–538 | DOI | MR | Zbl

[17] Jikov V. V., “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269

[18] Dal Maso G., An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993 | MR | Zbl

[19] Weinan E., “A class of homogenization problems in the calculus of variations”, Comm. Pure Appl. Math., 44:7 (1991), 733–759 | DOI | MR | Zbl