On integral representation of $\Gamma$-limit functionals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $\Gamma$-convergence of a sequence of integral functionals $F_n(u)$, defined on the functions $u$ from the Sobolev space $W^{1,\alpha}(\Omega)$ ($\alpha>1$), $\Omega$ is a bounded Lipschitz domain, where the integrand $f_n(x,u,\nabla u)$ depends on a function $u$ and its gradient $\nabla u$. As functions of $\xi$, the integrands $f_n(x,s,\xi)$ are convex and satisfy a two-sided power estimate on the coercivity and growth with different exponents $\alpha\beta$. Besides, the integrands $f_n(x,s,\xi)$ are equi-continuous over $s$ in some sense with respect to $n$. We prove that for the functions from $L^\infty(\Omega)\cap W^{1,\beta}(\Omega)$ the $\Gamma$-limit functional coincides with an integral functional $F(u)$ for which the integrand $f(x,s,\xi)$ is of the same class as $f_n(x,s,\xi)$.
@article{FPM_2014_19_4_a3,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {On integral representation of $\Gamma$-limit functionals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--120},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - On integral representation of $\Gamma$-limit functionals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 101
EP  - 120
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/
LA  - ru
ID  - FPM_2014_19_4_a3
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T On integral representation of $\Gamma$-limit functionals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 101-120
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/
%G ru
%F FPM_2014_19_4_a3
V. V. Zhikov; S. E. Pastukhova. On integral representation of $\Gamma$-limit functionals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/