Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_4_a3, author = {V. V. Zhikov and S. E. Pastukhova}, title = {On integral representation of $\Gamma$-limit functionals}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {101--120}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/} }
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - On integral representation of $\Gamma$-limit functionals JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 101 EP - 120 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/ LA - ru ID - FPM_2014_19_4_a3 ER -
V. V. Zhikov; S. E. Pastukhova. On integral representation of $\Gamma$-limit functionals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/
[1] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–998 | MR | Zbl
[2] Zhikov V. V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Mat. sb., 183:8 (1992), 47–84 | MR | Zbl
[3] Zhikov V. V., “O variatsionnykh zadachakh i nelineinykh uravneniyakh s nestandartnymi usloviyami rosta”, Probl. mat. analiza, 54, 2014, 23–112
[4] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR
[5] Zhikov V. V., Pastukhova S. E., “Gamma-skhodimost integrantov s nestandartnymi usloviyami koertsitivnosti i rosta”, Probl. mat. analiza, 74, 2013, 85–108
[6] Zhikov V. V., Pastukhova S. E., “O gamma-skhodimosti ostsilliruyuschikh integrantov s nestandartnymi usloviyami koertsitivnosti i rosta”, Matem. sb., 205:4 (2014), 33–68 | DOI | MR | Zbl
[7] Kuratovskii L., Topologiya, v. 1, Mir, M., 1966
[8] Struve M., Variatsionnye metody, MTsNMO, M., 2010
[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[10] Braides A., $\Gamma$-Convergence for Beginners, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[11] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lect. Ser. Math. Its Appl., 12, Clarendon Press, 1998 | MR | Zbl
[12] Carbone L., Sbordone C., “Some properties of $\Gamma$-limits of integral functionals”, Ann. Mat. Pura Appl. (4), 122:1 (1979), 1–60 | DOI | MR | Zbl
[13] De Giorgi E., “Sulla convergenza di alcune successioni di integrali del tipo dell' area”, Rend. Mat. Roma (6), 8 (1975), 277–294 | MR | Zbl
[14] De Giorgi E., Franzoni T.,, “Su un tipo di convergenza variazionale”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58:6 (1975), 842–850 | MR | Zbl
[15] De Giorgi E., Letta G., “Une notion generale de convergence faible des fonctions croissantes d'ensemble”, Ann. Scu. Sup. Pisa (4), 4:1 (1977), 61–99 | MR | Zbl
[16] Ioffe A. D., “On lower semicontinuity of integral functionals. I”, SIAM J. Control Optim., 15:4 (1977), 521–538 | DOI | MR | Zbl
[17] Jikov V. V., “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269
[18] Dal Maso G., An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993 | MR | Zbl
[19] Weinan E., “A class of homogenization problems in the calculus of variations”, Comm. Pure Appl. Math., 44:7 (1991), 733–759 | DOI | MR | Zbl