On integral representation of $\Gamma$-limit functionals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the $\Gamma$-convergence of a sequence of integral functionals $F_n(u)$, defined on the functions $u$ from the Sobolev space $W^{1,\alpha}(\Omega)$ ($\alpha>1$), $\Omega$ is a bounded Lipschitz domain, where the integrand $f_n(x,u,\nabla u)$ depends on a function $u$ and its gradient $\nabla u$. As functions of $\xi$, the integrands $f_n(x,s,\xi)$ are convex and satisfy a two-sided power estimate on the coercivity and growth with different exponents $\alpha\beta$. Besides, the integrands $f_n(x,s,\xi)$ are equi-continuous over $s$ in some sense with respect to $n$. We prove that for the functions from $L^\infty(\Omega)\cap W^{1,\beta}(\Omega)$ the $\Gamma$-limit functional coincides with an integral functional $F(u)$ for which the integrand $f(x,s,\xi)$ is of the same class as $f_n(x,s,\xi)$.
@article{FPM_2014_19_4_a3,
author = {V. V. Zhikov and S. E. Pastukhova},
title = {On integral representation of $\Gamma$-limit functionals},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {101--120},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/}
}
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - On integral representation of $\Gamma$-limit functionals JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 101 EP - 120 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/ LA - ru ID - FPM_2014_19_4_a3 ER -
V. V. Zhikov; S. E. Pastukhova. On integral representation of $\Gamma$-limit functionals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 4, pp. 101-120. http://geodesic.mathdoc.fr/item/FPM_2014_19_4_a3/