Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_3_a6, author = {M. V. Shamolin}, title = {Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {187--222}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/} }
TY - JOUR AU - M. V. Shamolin TI - Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 187 EP - 222 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/ LA - ru ID - FPM_2014_19_3_a6 ER -
%0 Journal Article %A M. V. Shamolin %T Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 187-222 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/ %G ru %F FPM_2014_19_3_a6
M. V. Shamolin. Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 187-222. http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl
[2] Belyaev A. V., “O dvizhenii mnogomernogo tela s zakreplënnoi tochkoi v pole sily tyazhesti”, Mat. sb., 114(156):3 (1981), 465–470 | MR | Zbl
[3] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR
[4] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR
[5] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969
[6] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988
[7] Georgievskii D. V., Shamolin M. V., “Valerii Vladimirovich Trofimov”, Sovrem. matem. Fundam. napravleniya, 23, 2007, 5–15 | MR | Zbl
[8] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tvërdogo tela s nepodvizhnoi tochkoi v $\mathbb R^n$”, Dokl. RAN, 380:1 (2001), 47–50 | MR
[9] Georgievskii D. V., Shamolin M. V., “Obobschënnye dinamicheskie uravneniya Eilera dlya tvërdogo tela s nepodvizhnoi tochkoi v $\mathbb R^n$”, Dokl. RAN, 383:5 (2002), 635–637 | MR
[10] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschënnogo giroskopa v $\mathbb R^n$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 5, 37–41 | MR
[11] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova, provodyaschegosya na mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova”, Sovrem. matem. Fundam. napravleniya, 23, 2007, 16–45
[12] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova, provodyaschegosya na mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 62, 2009, 3–15
[13] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova, provodyaschegosya na mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova pod rukovodstvom S. A. Agafonova, D. V. Georgievskogo i M. V. Shamolina”, Matematicheskaya fizika, kombinatorika i optimalnoe upravlenie, Sovrem. mat. i eë pril., 65, 2009, 3–10
[14] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara mekhaniko-matematicheskogo fakulteta MGU im. M. V. Lomonosova “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova pod rukovodstvom prof. D. V. Georgievskogo, d.f.-m.n. M. V. Shamolina, prof. S. A. Agafonova”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 76, 2012, 3–10 | MR
[15] Georgievskii D. V., Shamolin M. V., “Simvoly Levi-Chivity, obobschënnye vektornye proizvedeniya i novye sluchai integriruemosti v mekhanike mnogomernogo tela”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 76, 2012, 22–39 | MR
[16] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhëlogo tvërdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.–L., 1953 | Zbl
[17] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979
[18] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR
[19] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi mat. nauk, 38:1 (1983), 3–67 | MR | Zbl
[20] Lamb G., Gidrodinamika, Fizmatgiz, M., 1947
[21] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, MGU, M., 1986
[22] Puankare A., Izbrannye trudy, v 3-kh t., v. 1, 2, Novye metody v nebesnoi mekhanike, Nauka, M., 1971, 1972
[23] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 3, 51–54 | MR | Zbl
[24] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1983; т. 2, 1984
[25] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl
[26] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundament. i prikl. mat., 16:4 (2010), 3–229 | MR
[27] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR
[28] Chaplygin S. A., “O dvizhenii tyazhëlykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135
[29] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1992, no. 1, 52–58 | MR | Zbl
[30] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN, 337:5 (1994), 611–614 | MR | Zbl
[31] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tvërdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN, 349:2 (1996), 193–197 | MR | Zbl
[32] Shamolin M. V., “Periodicheskie i ustoichivye po Puassonu traektorii v zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Izv. RAN. MTT, 1996, no. 2, 55–63
[33] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1997, no. 2, 65–68 | MR
[34] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Uspekhi mat. nauk, 52:3 (1997), 177–178 | DOI | MR | Zbl
[35] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi mat. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl
[36] Shamolin M. V., “Semeistvo portretov s predelnymi tsiklami v ploskoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1998, no. 6, 29–37 | MR
[37] Shamolin M. V., “Nekotorye klassy chastnykh reshenii v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1999, no. 2, 178–189 | MR
[38] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 364:5 (1999), 627–629 | MR | Zbl
[39] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Uspekhi mat. nauk, 54:5 (1999), 181–182 | DOI | MR | Zbl
[40] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrëkhmernogo tvërdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN, 375:3 (2000), 343–346 | MR
[41] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 371:4 (2000), 480–483 | MR
[42] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Uspekhi mat. nauk, 55:3 (2000), 187–188 | DOI | MR | Zbl
[43] Shamolin M. V., “Ob ustoichivosti dvizheniya tvërdogo tela v soprotivlyayuscheisya srede, zakruchennogo vokrug svoei prodolnoi osi”, Izv. RAN. MTT, 2001, no. 1, 189–193
[44] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2001, no. 5, 22–28 | MR | Zbl
[45] Shamolin M. V., “Sluchai integriruemosti uravnenii prostranstvennoi dinamiki tvërdogo tela”, Prikl. mekh., 37:6 (2001), 74–82 | MR | Zbl
[46] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Uspekhi mat. nauk, 57:1 (2002), 169–170 | DOI | MR | Zbl
[47] Shamolin M. V., “Geometricheskoe predstavlenie dvizheniya v odnoi zadache o vzaimodeistvii tela so sredoi”, Prikl. mekh., 40:4 (2004), 137–144 | MR | Zbl
[48] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $\mathrm{so}(4)\times\mathbb R^n$”, Uspekhi mat. nauk, 60:6 (2005), 233–234 | DOI | MR | Zbl
[49] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi, pri uchëte vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN, 403:4 (2005), 482–485 | MR
[50] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. i mekh., 69:6 (2005), 1003–1010 | MR | Zbl
[51] Shamolin M. V., “K zadache o prostranstvennom tormozhenii tvërdogo tela v soprotivlyayuscheisya srede”, Izv. RAN. MTT, 2006, no. 3, 45–57
[52] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tvërdogo tela, Ekzamen, M., 2007
[53] Shamolin M. V., “Nekotorye modelnye zadachi dinamiki tvërdogo tela pri vzaimodeistvii ego so sredoi”, Prikl. mekh., 43:10 (2007), 49–67 | MR | Zbl
[54] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke sredy pri uchëte vraschatelnykh proizvodnykh momenta sily eë vozdeistviya”, Izv. RAN. MTT, 2007, no. 3, 187–192 | MR
[55] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Uspekhi mat. nauk, 62:5 (2007), 169–170 | DOI | MR | Zbl
[56] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundament. i prikl. mat., 14:3 (2008), 3–237 | MR | Zbl
[57] Shamolin M. V., “Novye integriruemye sluchai v dinamike tela, vzaimodeistvuyuschego so sredoi, pri uchëte zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Prikl. mat. i mekh., 72:2 (2008), 273–287 | MR | Zbl
[58] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 3, 43–49 | MR | Zbl
[59] Shamolin M. V., “Trëkhparametricheskoe semeistvo fazovykh portretov v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 418:1 (2008), 46–51 | MR | Zbl
[60] Shamolin M. V., “Klassifikatsiya sluchaev polnoi integriruemosti v dinamike simmetrichnogo chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Matematicheskaya fizika, kombinatorika i optimalnoe upravlenie, Sovrem. mat. i eë pril., 65, 2009, 131–141 | MR
[61] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Dokl. RAN, 425:3 (2009), 338–342 | MR | Zbl
[62] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 62, 2009, 130–170 | MR
[63] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tvërdogo tela”, Dokl. RAN, 431:3 (2010), 339–343 | MR | Zbl
[64] Shamolin M. V., “Prostranstvennoe dvizhenie tvërdogo tela v srede s soprotivleniem”, Prikl. mekh., 46:7 (2010), 120–133 | MR
[65] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Uspekhi mat. nauk, 65:1 (2010), 189–190 | DOI | MR | Zbl
[66] Shamolin M. V., “Dvizhenie tvërdogo tela v soprotivlyayuscheisya srede”, Mat. modelirovanie, 23:12 (2011), 79–104 | MR | Zbl
[67] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 3, 24–30 | MR
[68] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR
[69] Shamolin M. V., “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trëkhmernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 2011, no. 5(86), 187–189
[70] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrëkhmernogo tvërdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 440:2 (2011), 187–190 | MR
[71] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchëtom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. modelirovanie, 24:10 (2012), 109–132 | MR
[72] Shamolin M. V., “Nekotorye voprosy kachestvennoi teorii v dinamike sistem s peremennoi dissipatsiei”, Differentsialnye uravneniya v chastnykh proizvodnykh i optimalnoe upravlenie, Sovrem. mat. i eë pril., 78, 2012, 138–147 | MR
[73] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrëkhmernogo tvërdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 444:5 (2012), 506–509 | MR
[74] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi, pri uchëte lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR
[75] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya tvërdogo tela v soprotivlyayuscheisya srede pri uchëte lineinogo dempfirovaniya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 4, 44–47 | MR
[76] Shamolin M. V., “Sopostavlenie sluchaev polnoi integriruemosti v dinamike dvumernogo, trëkhmernogo i chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 76, 2012, 84–99 | MR
[77] Yakobi K., Lektsii po dinamike, ONTI, M.–L., 1936
[78] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2526–2555 | DOI | MR
[79] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, J. Math. Sci., 114:1 (2003), 919–975 | DOI | MR | Zbl
[80] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, J. Math. Sci., 122:1 (2004), 2841–2915 | DOI | MR | Zbl
[81] Shamolin M. V., “Structural stable vector fields in rigid body dynamics”, Proc. of 8th Conf. on Dynamical Systems: Theory and Applications, DSTA 2005 (Lodz, Poland, Dec. 12–15, 2005), v. 1, Tech. Univ. Lodz, 2005, 429–436
[82] Shamolin M. V., “The cases of integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium”, Proc. of 9th Conf. on Dynamical Systems: Theory and Applications, DSTA 2007 (Lodz, Poland, Dec. 17–20, 2007), v. 1, Tech. Univ. Lodz, 2007, 415–422
[83] Shamolin M. V., “Some methods of analysis of the dynamic systems with various dissipation in dynamics of a rigid body”, Proc. Appl. Math. Mech., 8 (2008), 10137–10138 | DOI
[84] Shamolin M. V., “Dynamical systems with variable dissipation: methods and applications”, Proc. of 10th Conf. on Dynamical Systems: Theory and Applications, DSTA 2009 (Lodz, Poland, Dec. 7–10, 2009), Tech. Univ. Lodz, 2009, 91–104
[85] Shamolin M. V., “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, Proc. Appl. Math. Mech., 9 (2009), 139–140 | DOI
[86] Shamolin M. V., “Integrability and nonintegrability in terms of transcendental functions in dynamics of a rigid body”, Proc. Appl. Math. Mech., 10 (2010), 63–64 | DOI
[87] Shamolin M. V., “Variety of the cases of integrability in dynamics of a 2D-, 3D-, and 4D-rigid body interacting with a medium”, Proc. of 11th Conf. on Dynamical Systems: Theory and Applications, DSTA 2011 (Lodz, Poland, Dec. 5–8, 2011), v. 1, Tech. Univ. Lodz, 2011, 11–24