Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 187-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of integrable cases in the dynamics of a five-dimensional rigid body under the action of a nonconservative force field. We review both new results and results obtained earlier. Problems examined are described by dynamical systems with so-called variable dissipation with zero mean. The problem of the search for complete sets of transcendental first integrals of systems with dissipation is quite topical; a large number of works are devoted to it. We introduce a new class of dynamical systems that have a periodic coordinate. Due to the existence of nontrivial symmetry groups of such systems, we can prove that these systems possess variable dissipation with zero mean, which means that on the average for a period with respect to the periodic coordinate, the dissipation in the system is equal to zero, although in various domains of the phase space, either the energy pumping or dissipation can occur. Based on the facts obtained, we analyze dynamical systems that appear in the dynamics of a five-dimensional rigid body and obtain a series of new cases of complete integrability of the equations of motion in transcendental functions that can be expressed through a finite combination of elementary functions.
@article{FPM_2014_19_3_a6,
     author = {M. V. Shamolin},
     title = {Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {187--222},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 187
EP  - 222
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/
LA  - ru
ID  - FPM_2014_19_3_a6
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 187-222
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/
%G ru
%F FPM_2014_19_3_a6
M. V. Shamolin. Integrable cases in the dynamics of a~multi-dimensional rigid body in a~nonconservative field in the presence of a~tracking force. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 187-222. http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a6/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl

[2] Belyaev A. V., “O dvizhenii mnogomernogo tela s zakreplënnoi tochkoi v pole sily tyazhesti”, Mat. sb., 114(156):3 (1981), 465–470 | MR | Zbl

[3] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[4] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR

[5] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969

[6] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988

[7] Georgievskii D. V., Shamolin M. V., “Valerii Vladimirovich Trofimov”, Sovrem. matem. Fundam. napravleniya, 23, 2007, 5–15 | MR | Zbl

[8] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tvërdogo tela s nepodvizhnoi tochkoi v $\mathbb R^n$”, Dokl. RAN, 380:1 (2001), 47–50 | MR

[9] Georgievskii D. V., Shamolin M. V., “Obobschënnye dinamicheskie uravneniya Eilera dlya tvërdogo tela s nepodvizhnoi tochkoi v $\mathbb R^n$”, Dokl. RAN, 383:5 (2002), 635–637 | MR

[10] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschënnogo giroskopa v $\mathbb R^n$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 5, 37–41 | MR

[11] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova, provodyaschegosya na mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova”, Sovrem. matem. Fundam. napravleniya, 23, 2007, 16–45

[12] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova, provodyaschegosya na mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 62, 2009, 3–15

[13] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova, provodyaschegosya na mekhaniko-matematicheskom fakultete MGU im. M. V. Lomonosova pod rukovodstvom S. A. Agafonova, D. V. Georgievskogo i M. V. Shamolina”, Matematicheskaya fizika, kombinatorika i optimalnoe upravlenie, Sovrem. mat. i eë pril., 65, 2009, 3–10

[14] Georgievskii D. V., Shamolin M. V., “Zasedaniya seminara mekhaniko-matematicheskogo fakulteta MGU im. M. V. Lomonosova “Aktualnye problemy geometrii i mekhaniki” im. prof. V. V. Trofimova pod rukovodstvom prof. D. V. Georgievskogo, d.f.-m.n. M. V. Shamolina, prof. S. A. Agafonova”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 76, 2012, 3–10 | MR

[15] Georgievskii D. V., Shamolin M. V., “Simvoly Levi-Chivity, obobschënnye vektornye proizvedeniya i novye sluchai integriruemosti v mekhanike mnogomernogo tela”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 76, 2012, 22–39 | MR

[16] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhëlogo tvërdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.–L., 1953 | Zbl

[17] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[18] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR

[19] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi mat. nauk, 38:1 (1983), 3–67 | MR | Zbl

[20] Lamb G., Gidrodinamika, Fizmatgiz, M., 1947

[21] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, MGU, M., 1986

[22] Puankare A., Izbrannye trudy, v 3-kh t., v. 1, 2, Novye metody v nebesnoi mekhanike, Nauka, M., 1971, 1972

[23] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 3, 51–54 | MR | Zbl

[24] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1983; т. 2, 1984

[25] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl

[26] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundament. i prikl. mat., 16:4 (2010), 3–229 | MR

[27] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[28] Chaplygin S. A., “O dvizhenii tyazhëlykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[29] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1992, no. 1, 52–58 | MR | Zbl

[30] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN, 337:5 (1994), 611–614 | MR | Zbl

[31] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tvërdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN, 349:2 (1996), 193–197 | MR | Zbl

[32] Shamolin M. V., “Periodicheskie i ustoichivye po Puassonu traektorii v zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Izv. RAN. MTT, 1996, no. 2, 55–63

[33] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1997, no. 2, 65–68 | MR

[34] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Uspekhi mat. nauk, 52:3 (1997), 177–178 | DOI | MR | Zbl

[35] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi mat. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[36] Shamolin M. V., “Semeistvo portretov s predelnymi tsiklami v ploskoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1998, no. 6, 29–37 | MR

[37] Shamolin M. V., “Nekotorye klassy chastnykh reshenii v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1999, no. 2, 178–189 | MR

[38] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 364:5 (1999), 627–629 | MR | Zbl

[39] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Uspekhi mat. nauk, 54:5 (1999), 181–182 | DOI | MR | Zbl

[40] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrëkhmernogo tvërdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN, 375:3 (2000), 343–346 | MR

[41] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 371:4 (2000), 480–483 | MR

[42] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Uspekhi mat. nauk, 55:3 (2000), 187–188 | DOI | MR | Zbl

[43] Shamolin M. V., “Ob ustoichivosti dvizheniya tvërdogo tela v soprotivlyayuscheisya srede, zakruchennogo vokrug svoei prodolnoi osi”, Izv. RAN. MTT, 2001, no. 1, 189–193

[44] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2001, no. 5, 22–28 | MR | Zbl

[45] Shamolin M. V., “Sluchai integriruemosti uravnenii prostranstvennoi dinamiki tvërdogo tela”, Prikl. mekh., 37:6 (2001), 74–82 | MR | Zbl

[46] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Uspekhi mat. nauk, 57:1 (2002), 169–170 | DOI | MR | Zbl

[47] Shamolin M. V., “Geometricheskoe predstavlenie dvizheniya v odnoi zadache o vzaimodeistvii tela so sredoi”, Prikl. mekh., 40:4 (2004), 137–144 | MR | Zbl

[48] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $\mathrm{so}(4)\times\mathbb R^n$”, Uspekhi mat. nauk, 60:6 (2005), 233–234 | DOI | MR | Zbl

[49] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi, pri uchëte vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN, 403:4 (2005), 482–485 | MR

[50] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. i mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[51] Shamolin M. V., “K zadache o prostranstvennom tormozhenii tvërdogo tela v soprotivlyayuscheisya srede”, Izv. RAN. MTT, 2006, no. 3, 45–57

[52] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tvërdogo tela, Ekzamen, M., 2007

[53] Shamolin M. V., “Nekotorye modelnye zadachi dinamiki tvërdogo tela pri vzaimodeistvii ego so sredoi”, Prikl. mekh., 43:10 (2007), 49–67 | MR | Zbl

[54] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke sredy pri uchëte vraschatelnykh proizvodnykh momenta sily eë vozdeistviya”, Izv. RAN. MTT, 2007, no. 3, 187–192 | MR

[55] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Uspekhi mat. nauk, 62:5 (2007), 169–170 | DOI | MR | Zbl

[56] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundament. i prikl. mat., 14:3 (2008), 3–237 | MR | Zbl

[57] Shamolin M. V., “Novye integriruemye sluchai v dinamike tela, vzaimodeistvuyuschego so sredoi, pri uchëte zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Prikl. mat. i mekh., 72:2 (2008), 273–287 | MR | Zbl

[58] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 3, 43–49 | MR | Zbl

[59] Shamolin M. V., “Trëkhparametricheskoe semeistvo fazovykh portretov v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 418:1 (2008), 46–51 | MR | Zbl

[60] Shamolin M. V., “Klassifikatsiya sluchaev polnoi integriruemosti v dinamike simmetrichnogo chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Matematicheskaya fizika, kombinatorika i optimalnoe upravlenie, Sovrem. mat. i eë pril., 65, 2009, 131–141 | MR

[61] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Dokl. RAN, 425:3 (2009), 338–342 | MR | Zbl

[62] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 62, 2009, 130–170 | MR

[63] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tvërdogo tela”, Dokl. RAN, 431:3 (2010), 339–343 | MR | Zbl

[64] Shamolin M. V., “Prostranstvennoe dvizhenie tvërdogo tela v srede s soprotivleniem”, Prikl. mekh., 46:7 (2010), 120–133 | MR

[65] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Uspekhi mat. nauk, 65:1 (2010), 189–190 | DOI | MR | Zbl

[66] Shamolin M. V., “Dvizhenie tvërdogo tela v soprotivlyayuscheisya srede”, Mat. modelirovanie, 23:12 (2011), 79–104 | MR | Zbl

[67] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 3, 24–30 | MR

[68] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR

[69] Shamolin M. V., “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trëkhmernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 2011, no. 5(86), 187–189

[70] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrëkhmernogo tvërdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 440:2 (2011), 187–190 | MR

[71] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchëtom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. modelirovanie, 24:10 (2012), 109–132 | MR

[72] Shamolin M. V., “Nekotorye voprosy kachestvennoi teorii v dinamike sistem s peremennoi dissipatsiei”, Differentsialnye uravneniya v chastnykh proizvodnykh i optimalnoe upravlenie, Sovrem. mat. i eë pril., 78, 2012, 138–147 | MR

[73] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrëkhmernogo tvërdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 444:5 (2012), 506–509 | MR

[74] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tvërdogo tela, vzaimodeistvuyuschego so sredoi, pri uchëte lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR

[75] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya tvërdogo tela v soprotivlyayuscheisya srede pri uchëte lineinogo dempfirovaniya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 4, 44–47 | MR

[76] Shamolin M. V., “Sopostavlenie sluchaev polnoi integriruemosti v dinamike dvumernogo, trëkhmernogo i chetyrëkhmernogo tvërdogo tela v nekonservativnom pole”, Geometriya i mekhanika, Sovrem. mat. i eë pril., 76, 2012, 84–99 | MR

[77] Yakobi K., Lektsii po dinamike, ONTI, M.–L., 1936

[78] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2526–2555 | DOI | MR

[79] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, J. Math. Sci., 114:1 (2003), 919–975 | DOI | MR | Zbl

[80] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, J. Math. Sci., 122:1 (2004), 2841–2915 | DOI | MR | Zbl

[81] Shamolin M. V., “Structural stable vector fields in rigid body dynamics”, Proc. of 8th Conf. on Dynamical Systems: Theory and Applications, DSTA 2005 (Lodz, Poland, Dec. 12–15, 2005), v. 1, Tech. Univ. Lodz, 2005, 429–436

[82] Shamolin M. V., “The cases of integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium”, Proc. of 9th Conf. on Dynamical Systems: Theory and Applications, DSTA 2007 (Lodz, Poland, Dec. 17–20, 2007), v. 1, Tech. Univ. Lodz, 2007, 415–422

[83] Shamolin M. V., “Some methods of analysis of the dynamic systems with various dissipation in dynamics of a rigid body”, Proc. Appl. Math. Mech., 8 (2008), 10137–10138 | DOI

[84] Shamolin M. V., “Dynamical systems with variable dissipation: methods and applications”, Proc. of 10th Conf. on Dynamical Systems: Theory and Applications, DSTA 2009 (Lodz, Poland, Dec. 7–10, 2009), Tech. Univ. Lodz, 2009, 91–104

[85] Shamolin M. V., “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, Proc. Appl. Math. Mech., 9 (2009), 139–140 | DOI

[86] Shamolin M. V., “Integrability and nonintegrability in terms of transcendental functions in dynamics of a rigid body”, Proc. Appl. Math. Mech., 10 (2010), 63–64 | DOI

[87] Shamolin M. V., “Variety of the cases of integrability in dynamics of a 2D-, 3D-, and 4D-rigid body interacting with a medium”, Proc. of 11th Conf. on Dynamical Systems: Theory and Applications, DSTA 2011 (Lodz, Poland, Dec. 5–8, 2011), v. 1, Tech. Univ. Lodz, 2011, 11–24