Mathematical modeling of bending of a~circular plate with the use of $S$-splines
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 171-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is concerned with the application of newly developed high-order semi-local smoothing splines (or $S$-splines) in solving problems in elasticity. We will consider seventh-degree $S$-splines, which preserve the four continuous derivatives ($C^4$-smooth splines) and remain stable. The problem in question can be reduced to solving an inhomogenous biharmonic equation by the Galerkin method, where as a system of basis functions we take the $C^4$-smooth fundamental $S$-splines. Such an approach is capable of not only delivering high accuracy of the resulting numerical solution under fairly small number of basis function, but may also easily deliver the sought-for loads. In finding the loads, as is known, one has to twice numerically differentiate the resulting bipotential, which is the solution of the biharmonic equation. This results in roundoff propagation.
@article{FPM_2014_19_3_a5,
     author = {A. N. Fedosova and D. A. Silaev},
     title = {Mathematical modeling of bending of a~circular plate with the use of $S$-splines},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--185},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a5/}
}
TY  - JOUR
AU  - A. N. Fedosova
AU  - D. A. Silaev
TI  - Mathematical modeling of bending of a~circular plate with the use of $S$-splines
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 171
EP  - 185
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a5/
LA  - ru
ID  - FPM_2014_19_3_a5
ER  - 
%0 Journal Article
%A A. N. Fedosova
%A D. A. Silaev
%T Mathematical modeling of bending of a~circular plate with the use of $S$-splines
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 171-185
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a5/
%G ru
%F FPM_2014_19_3_a5
A. N. Fedosova; D. A. Silaev. Mathematical modeling of bending of a~circular plate with the use of $S$-splines. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 171-185. http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a5/

[1] Marchuk G. I., Agashkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1987

[2] Silaev D. A., “Dvazhdy nepreryvno differentsiruemyi polulokalnyi sglazhivayuschii splain”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 11–19 | MR

[3] Silaev D. A., “Polulokalnye sglazhivayuschie $S$-splainy”, Kompyuternye issledovaniya i modelirovanie, 2:4 (2010), 349–358

[4] Silaev D. A., Amilyuschenko A. V., Lukyanov A. I., Korotaev D. O., “Polulokalnye sglazhivayuschie splainy klassa $C^1$”, Tr. seminara im. I. G. Petrovskogo, 26, 2007, 348–368 | MR

[5] Silaev D. A., Ingtem Zh. G., “Polulokalnye sglazhivayuschie splainy sedmoi stepeni”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2010, no. 6, 104–112

[6] Silaev D. A., Korotaev D. O., “$S$-splain na kruge”, Tez. mezhdunar. konf. “Matematika. Kompyuter. Obrazovanie”, Puschino, 2003, 157

[7] Silaev D. A., Korotaev D. O., “Reshenie kraevykh zadach s pomoschyu $S$-splaina”, Matematika. Kompyuter. Obrazovanie, Sb. nauch. tr., v. 2, ed. G. Yu. Riznichenko, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2006, 85–104

[8] Silaev D. A., Korotaev D. O., “Reshenie kraevykh zadach s pomoschyu $S$-splaina”, Kompyuternye issledovaniya i modelirovanie, 1:2 (2009), 161–172

[9] Silaev D. A., Yakushina G. I., “Priblizhenie $S$-splainami gladkikh funktsii”, Tr. seminara im. I. G. Petrovskogo, 10, 1984, 197–206 | MR | Zbl

[10] Timoshenko S. P., Istoriya soprotivleniya materialov s kratkimi svedeniyami iz teorii uprugosti i teorii sooruzhenii, Gostekhizdat, M., 1957

[11] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Gostekhizdat, M., 1953

[12] Fletcher K., Chislennye metody na osnove metoda Galërkina, Mir, M., 1988

[13] Kirchhoff G. R., “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”, J. Reine Angew. Math., 40 (1850), 51–88 | DOI | Zbl