The splitting of separatrices, the branching of solutions, and nonintegrability of many-dimensional systems. Application to the problem of the motion of a~spherical pendulum with an oscillating suspension point
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 23-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some possibilities of the author's approach to the problem of nonintegrability of multidimensional systems related to the splitting of multidimensional separatrices and branching of solutions in the complex domain are discussed, using the example of the problem of the motion of a spherical pendulum with a suspension point performing small spatial periodic oscillations. Previous results are briefly reproduced and their generalizations are discussed, which are based on the calculation of a perturbation of the linear part of the Poincaré map at a hyperbolic point. We have succeeded in obtaining weaker conditions of nonintegrability, since this perturbation, generally speaking, violates the scalar nature of the restrictions of the linear part of the map to its two-dimensional expanding and contracting invariant subspaces. However, these conditions are expressed in terms of some repeated integrals because one must work in the second order of the perturbation theory. It is shown that in the case where the acceleration of the suspension point is represented by a function of complex time uni-valued over punctured vicinities of some isolated singularities, the nonintegrability conditions can be reduced to very simple ones in terms of certain local quantities associated with these singularities. The approach developed can be useful in problems where an unperturbed system possesses a symmetry leading to a degeneration, like the scalar nature of the restrictions of the linear part of the Poincaré map to its invariant subspaces.
@article{FPM_2014_19_3_a2,
     author = {S. A. Dovbysh},
     title = {The splitting of separatrices, the branching of solutions, and nonintegrability of many-dimensional systems. {Application} to the problem of the motion of a~spherical pendulum with an oscillating suspension point},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--90},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a2/}
}
TY  - JOUR
AU  - S. A. Dovbysh
TI  - The splitting of separatrices, the branching of solutions, and nonintegrability of many-dimensional systems. Application to the problem of the motion of a~spherical pendulum with an oscillating suspension point
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 23
EP  - 90
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a2/
LA  - ru
ID  - FPM_2014_19_3_a2
ER  - 
%0 Journal Article
%A S. A. Dovbysh
%T The splitting of separatrices, the branching of solutions, and nonintegrability of many-dimensional systems. Application to the problem of the motion of a~spherical pendulum with an oscillating suspension point
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 23-90
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a2/
%G ru
%F FPM_2014_19_3_a2
S. A. Dovbysh. The splitting of separatrices, the branching of solutions, and nonintegrability of many-dimensional systems. Application to the problem of the motion of a~spherical pendulum with an oscillating suspension point. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 3, pp. 23-90. http://geodesic.mathdoc.fr/item/FPM_2014_19_3_a2/

[1] Alekseev V. M., “Finalnye dvizheniya v zadache trëkh tel i simvolicheskaya dinamika”, Uspekhi mat. nauk, 36:4 (1981), 161–176 | MR | Zbl

[2] Alekseev V. M., Katok A. B., Kushnirenko A. G., “Gladkie dinamicheskie sistemy”, Devyataya letnyaya matematicheskaya shkola (Katsiveli, 1971 g.), In-t matem. AN USSR, Kiev, 1972, 50–341

[3] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl

[4] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.–Izhevsk, 2002

[5] Dovbysh S. A., “Transversalnoe peresechenie separatris, struktura mnozhestva kvazisluchainykh dvizhenii i nesuschestvovanie analiticheskogo integrala v mnogomernykh sistemakh”, Uspekhi mat. nauk, 51:4 (1996), 153–154 | DOI | MR | Zbl

[6] Dovbysh S. A., “Vetvlenie reshenii v kompleksnoi oblasti s tochki zreniya simvolicheskoi dinamiki i neintegriruemost mnogomernykh sistem”, Dokl. RAN, 361:3 (1998), 303–306 | MR | Zbl

[7] Dovbysh S. A., “Rasscheplenie separatris, vetvlenie reshenii i neintegriruemost v zadache o dvizhenii sfericheskogo mayatnika s koleblyuscheisya tochkoi podvesa”, Prikl. mat. i mekh., 70:1 (2006), 46–61 | MR | Zbl

[8] Dovbysh S. A., O neintegriruemosti zadachi o dvizhenii sfericheskogo mayatnika s periodicheski koleblyuscheisya tochkoi podvesa, Otchët No 4999, NII mekhaniki MGU, 2009

[9] Dovbysh S. A., “Approksimatsionnaya teorema ob integralakh vdol konturov na kompleksnoi ploskosti i neintegriruemost sfericheskogo mayatnika s periodicheski koleblyuscheisya tochkoi podvesa”, Sovremennye problemy analiza i prepodavaniya matematiki, Mat. Mezhdunar. nauch. konf., posvyaschënnoi 105-letiyu akademika Sergeya Mikhailovicha Nikolskogo (17–19 maya 2010 g.), MGU im. M. V. Lomonosova, M., 74–75

[10] Ziglin S. L., “Samoperesechenie kompleksnykh separatris i nesuschestvovanie integrala v gamiltonovykh sistemakh s polutora stepenyami svobody”, Prikl. mat. i mekh., 45:3 (1981), 564–566 | MR | Zbl

[11] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi mat. nauk, 38:1 (1983), 3–67 | MR | Zbl

[12] Kozlov V. V., “O kolebaniyakh odnomernykh sistem s periodicheskim potentsialom”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1980, no. 6, 104–107 | Zbl

[13] Neimark Yu. I., “Simvolicheskaya dinamika, porozhdaemaya gomoklinicheskimi strukturami”, Differents. uravn., 12:2 (1976), 256–262 | MR

[14] Puankare A., “O probleme trëkh tel i ob uravneniyakh dinamiki”, Izbr. trudy, v. 2, Nauka, M., 1972, 357–444

[15] Ris F., Sëkefalfi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[16] Kholostova O. V., “Nekotorye zadachi o dvizhenii mayatnika pri gorizontalnykh vibratsiyakh tochki podvesa”, Prikl. mat. i mekh., 59:4 (1995), 581–589 | MR | Zbl

[17] Alexeyev V. M., “Sur l'allure finale du mouvement dans le problème des trois corps”, Actes du Congrès International des Mathématiciens (Nice, 1970), v. 2, Gauthier-Villars, Paris, 1971, 893–907 | MR

[18] Awrejcewicz J., Holicke M. M., Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods, World Scientific Ser. Nonlinear Sci. Ser. A: Monographs Treatises, 60, World Scientific, Hackensack, 2007 | MR | Zbl

[19] Bountis T., “Investigating non-integrability and chaos in complex time”, Physica D, 86:1–2 (1995), 256–267 | DOI | MR | Zbl

[20] Bountis T., Goriely A., Kollmann M., “A Mel'nikov vector for $N$-dimensional mappings”, Phys. Lett. A, 206:1–2 (1995), 38–48 | DOI | MR | Zbl

[21] Chow S.-N., Yamashita M., “Geometry of the Melnikov vector”, Nonlinear Equations in the Applied Sciences, Math. Sci. Engineering, 185, Academic Press, 1991, 79–148 | DOI | MR

[22] Delshams A., Ramírez-Ros R., “Melnikov potential for exact symplectic maps”, Comm. Math. Phys., 190:1 (1997), 213–245 | DOI | MR | Zbl

[23] Dovbysh S. A., “Transversal intersection of separatrices and non-existence of an analytical integral in multi-dimensional systems”, Variational and Local Methods in the Study of Hamiltonian Systems, Proc. of the Workshop (Trieste, 24–28 October, 1994), eds. A. Ambrosetti, G. F. Dell'Antonio, World Scientific, Singapore, 1995, 156–165 | MR | Zbl

[24] Dovbysh S. A., “Branching of solutions as obstructions to the existence of a meromorphic integral in many-dimensional systems”, Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Ser. Ser. C: Math. Phys. Sci., 533, Kluwer, Dordrecht, 1999, 324–329 | MR | Zbl

[25] Dovbysh S. A., “Transversal intersection of separatrices and branching of solutions as obstructions to the existence of an analytic integral in many-dimensional systems. I. Basic result: Separatrices of hyperbolic periodic points”, Collect. Math., 50:2 (1999), 119–197 | MR | Zbl

[26] Goriely A., Tabor M., “The singularity analysis for nearly integrable systems: homoclinic intersections and local multivaluedness”, Physica D, 85:1–2 (1995), 93–125 | DOI | MR | Zbl

[27] Gruendler J., “The existence of homoclinic orbits and the method of Melnikov for systems in $\mathbb R^n$”, SIAM J. Math. Anal., 16:5 (1985), 907–931 | DOI | MR | Zbl

[28] Kruskal M. D., Clarkson P. A., “The Painlevé–Kowalevski and poly-Painlevé tests for integrability”, Stud. Appl. Math., 86:2 (1992), 87–165 | MR | Zbl

[29] Kruskal M. D., Ramani A., Grammaticos B., “Singularity analysis and its relation to complete, partial and non-integrability”, Partially Integrable Evolution Equations in Physics, NATO Adv. Sci. Inst. Ser., Ser. C: Math. Phys. Sci., 310, eds. R. Conte, N. Boccara, Kluwer, Dordrecht, 1990, 321–372 | MR

[30] Sternberg S., “Local contractions and a theorem of Poincaré”, Amer. J. Math., 79:4 (1957), 809–824 | DOI | MR | Zbl

[31] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Text in Applied Math., 2, Springer, New York, 1990 | DOI | MR | Zbl