Algebraic simplification and cryptographic motives
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 109-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic simplification is considered from the general point of view. The main notion here is the so-called scheme of simplification due to the author. For a corepresented algebra simplificators are related to the standard basis (Gröbner basis, Gröbner–Shirshov basis) of the ideal of defining relations. We introduce as a main subject for study the class of algebras that may be obtained from ordered semigroup algebras by “deformation” in some sense. This class contains free associative algebras and universal enveloping algebras of Lie algebras. The main attention is paid to the latter algebras. Some possible applications to cryptography are given.
@article{FPM_2014_19_2_a5,
     author = {V. N. Latyshev},
     title = {Algebraic simplification and cryptographic motives},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {109--124},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a5/}
}
TY  - JOUR
AU  - V. N. Latyshev
TI  - Algebraic simplification and cryptographic motives
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 109
EP  - 124
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a5/
LA  - ru
ID  - FPM_2014_19_2_a5
ER  - 
%0 Journal Article
%A V. N. Latyshev
%T Algebraic simplification and cryptographic motives
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 109-124
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a5/
%G ru
%F FPM_2014_19_2_a5
V. N. Latyshev. Algebraic simplification and cryptographic motives. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 109-124. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a5/

[1] Shirshov A. I., “O bazakh svobodnoi algebry Li”, Algebra i logika, 1:1 (1962), 14–19 | MR | Zbl

[2] Apel J., Lassner W., “An extension of Buchberger's algorithm and calculations in enveloping fields of Lie algebras”, Symbol. Comput., 6 (1988), 361–370 | DOI | MR | Zbl

[3] Bergman G. M., “The diamond Lemma for ring theory”, Adv. Math., 6 (1978), 178–218 | DOI | MR

[4] Buchberger B., Loos R., “Algebraic simplification”, Computing, 4 (1982), 11–43 | MR | Zbl

[5] Golod E. S., “Standard bases and homology”, Algebra Some Current Trends., Proc. of the 5th Nat. School in Algebra (Varna, Bulgaria, Sept. 24 – Oct. 4, 1986), Lect. Notes Math., 1352, Springer, Berlin, 1988, 88–95 | DOI | MR

[6] Hurley B., Hurley T., Group ring cryptography, 2011, arXiv: 1104.1724v1[math.GR] | MR

[7] Latyshev V. N., “An improved version of standard bases”, Formal Power Series and Algebraic Combinatorics, Proc. 12th Int. Conf. FPSAC'00 (Moscow, Russia, June 2000), Springer, Berlin, 2000, 496–505 | DOI | MR | Zbl

[8] Newman M. H., “Theories with a combinatorial definition of ‘equivalence’ ”, Ann. Math., 43:2 (1942), 223–243 | DOI | MR | Zbl