Descriptive spaces and proper classes of functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 51-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The remarkable class of measurable functions was introduced by classics of function theory. It has found different applications in various branches of mathematics. However this class turned out too restrictive for solving some natural mathematical problems because it is essentially connected with the property of countability. Therefore, along with it another remarkable class, essentially connected with the property of finiteness, was introduced. It is the class of uniform functions. Measurable functions are described both in the classical Lebesgue–Borel language of preimages and in the quite new language of covers. Uniform functions are described in the language of covers exclusively. Both the families of measurable functions and the families of uniform functions are determined by the rigid structure of their supports (descriptive spaces). For this reason mathematicians weakened more that once the rigidity of the structure of descriptive spaces at the expense of using the additional property of negligence. The present paper is devoted to a contemporary formalization of the indicated ideas. Some applications of the introduced classes of functions to solving a number of known mathematical problems is traced in the paper.
@article{FPM_2014_19_2_a4,
     author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov},
     title = {Descriptive spaces and proper classes of functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {51--107},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a4/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
AU  - T. V. Rodionov
TI  - Descriptive spaces and proper classes of functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 51
EP  - 107
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a4/
LA  - ru
ID  - FPM_2014_19_2_a4
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%A T. V. Rodionov
%T Descriptive spaces and proper classes of functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 51-107
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a4/
%G ru
%F FPM_2014_19_2_a4
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. Descriptive spaces and proper classes of functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 51-107. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a4/

[1] Zakharov V. K., “Funktsionalnoe predstavlenie ravnomernogo popolneniya maksimalnogo i schëtno-plotnogo modulei chastnykh modulya nepreryvnykh funktsii”, Uspekhi mat. nauk, 35:4 (1980), 187–188 | MR | Zbl

[2] Zakharov V. K., “Funktsionalnaya kharakterizatsiya absolyuta, vektornye reshëtki funktsii so svoistvom Bera i kvazinormalnykh funktsii i moduli chastnykh nepreryvnykh funktsii”, Tr. MMO, 45, no. 1, 1982, 68–104 | MR | Zbl

[3] Zakharov V. K., “Svyazi mezhdu rasshireniem Lebega i rasshireniem Borelya pervogo klassa i mezhdu sootvetstvuyuschimi im proobrazami”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 928–956 | MR | Zbl

[4] Zakharov V. K., “Rasshirenie Arensa koltsa nepreryvnykh funktsii”, Algebra i analiz, 4:1 (1992), 135–153 | MR | Zbl

[5] Zakharov V. K., “Rasshireniya koltsa nepreryvnykh funktsii, porozhdënnye klassicheskim, ratsionalnym i regulyarnym koltsami chastnykh kak delimye obolochki”, Mat. sb., 186:12 (1995), 81–118 | MR | Zbl

[6] Zakharov V. K., “Rasshireniya koltsa nepreryvnykh funktsii, porozhdënnye regulyarnym, schetno-delimym i polnym koltsami chastnykh, i sootvetstvuyuschie im proobrazy”, Izv. RAN. Ser. mat., 59:4 (1995), 15–60 | MR | Zbl

[7] Zakharov V. K., “Svyaz mezhdu klassicheskim koltsom chastnykh koltsa nepreryvnykh funktsii i funktsiyami, integriruemymi po Rimanu”, Fundament. i prikl. mat., 1:1 (1995), 161–176 | MR | Zbl

[8] Zakharov V. K., “Svyazi mezhdu rasshireniem Rimana i klassicheskim koltsom chastnykh i mezhdu proobrazom Semadeni i sekventsialnym absolyutom”, Tr. MMO, 57, 1996, 239–262 | MR | Zbl

[9] Zakharov V. K., “Klassifikatsiya borelevskikh mnozhestv i funktsii dlya proizvolnogo prostranstva”, Dokl. RAN, 385:5 (2002), 596–598 | MR | Zbl

[10] Zakharov V. K., “Novye klassy funktsii, svyazannye s obschimi semeistvami mnozhestv”, Dokl. RAN, 407:2 (2006), 167–171 | MR

[11] Zakharov V. K., “Teoremy Khausdorfa ob izmerimykh funktsiyakh i novyi klass ravnomernykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 63:1 (2008), 3–8 | MR | Zbl

[12] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. mat., 3:4 (1997), 1135–1172 | MR | Zbl

[13] Zakharov V. K., Mikhalëv A. V., “Problema Radona dlya regulyarnykh mer na proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. mat., 3:3 (1997), 801–808 | MR | Zbl

[14] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. mat., 63:5 (1999), 37–82 | DOI | MR | Zbl

[15] Zakharov V. K., Mikhalëv A. V., “Svyaz mezhdu integralnymi radonovskimi predstavleniyami dlya lokalno kompaktnogo i khausdorfova prostranstv”, Fundament. i prikl. mat., 7:1 (2001), 33–46 | MR | Zbl

[16] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva. II”, Izv. RAN. Ser. mat., 66:6 (2002), 3–18 | DOI | MR | Zbl

[17] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Opisanie radonovskikh integralov kak lineinykh funktsionalov”, Fundament. i prikl. mat., 16:8 (2010), 87–161 | MR

[18] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii integralov”, Uspekhi mat. nauk, 65:4 (2010), 153–178 | DOI | MR | Zbl

[19] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema kharakterizatsii obschikh radonovskikh integralov”, Dokl. RAN, 433:6 (2010), 731–735 | MR | Zbl

[20] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Kharakterizatsiya integralov po vsem radonovskim meram s pomoschyu indeksov ogranichennosti”, Fundament. i prikl. mat., 17:1 (2011/2012), 107–126 | MR

[21] Zakharov V. K., Mikhalëv A. V., Seredinskii A. A., “Kharakterizatsiya prostranstva funktsii, integriruemykh po Rimanu, posredstvom sechenii prostranstva nepreryvnykh funktsii. II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 63:5 (2008), 11–20 | MR

[22] Zakharov V. K., Rodionov T. V., “Klassifikatsiya borelevskikh mnozhestv i funktsii na proizvolnom prostranstve”, Mat. sb., 199:6 (2008), 49–84 | DOI | MR | Zbl

[23] Zakharov V. K., Rodionov T. V., “Klass ravnomernykh funktsii i ego sootnoshenie s klassom izmerimykh funktsii”, Mat. zametki, 84:6 (2008), 809–824 | DOI | MR | Zbl

[24] Zakharov V. K., Rodionov T. V., “Estestvennost klassa izmerimykh funktsii v smysle Lebega–Borelya–Khausdorfa”, Mat. zametki, 95:4 (2014), 554–563 | DOI

[25] Zakharov V. K., Seredinskii A. A., “Novaya kharakterizatsiya funktsii, integriruemykh po Rimanu”, Fundament. i prikl. mat., 10:3 (2004), 73–83 | MR | Zbl

[26] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966 | MR

[27] Khausdorf F., Teoriya mnozhestv, URSS, M., 2004

[28] Aleksandroff A. D., “Additive set-functions in abstract spaces”, Mat. sb., 8(50):2 (1940), 307–348 ; Мат. сб., 9(51):3 (1941), 563–628 ; Мат. сб., 13(56):2–3 (1943), 169–238 | MR | Zbl | MR | Zbl | MR | Zbl

[29] Baire R., “Sur les fonctions de variables réelles”, Ann. Mat. Pura Appl. Ser. IIIa, 3 (1899), 1–122 | DOI

[30] Baire R., Leçons sur les fonctions discontinues, Gauthier-Villars, Paris, 1905 | Zbl

[31] Borel E., Leçons sur la théorie des fonctions, Gauthier-Villars, Paris, 1898 | Zbl

[32] Borel E., Leçons sur les fonctions de variables réelles, Gauthier-Villars, Paris, 1905 | Zbl

[33] Fine N. T., Gillman l., Lambek J., Rings of Quotients of Rings of Functions, McGill Univ. Press, Montreal, 1965 | MR

[34] Hausdorff F., Grundzüge der Mengenlehre, Viet, Leipzig, 1914

[35] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer, Berlin, 1965 | MR | Zbl

[36] Jech T., Set Theory, Springer, Berlin, 2002 | MR

[37] Lebesgue H., “Integral, longeur, aire”, Ann. Math. (3), 7 (1902), 231–359 | Zbl

[38] Lebesgue H., “Sur les séries triginométriques”, Ann. Sci. École Norm. Sup. (3), 20 (1903), 453–485 | MR | Zbl

[39] Lebesgue H., Leçons sur la l'integration et recherche des fonctions primitives, Gauthier-Villars, Paris, 1904 | Zbl

[40] Regoli G., “Some characterization of sets of measurable functions”, Am. Math. Month., 84:6 (1977), 455–458 | DOI | MR | Zbl

[41] Rodionov T. V., Zakharov V. K., “A fine correlation between Baire and Borel functional hierarchies”, Acta Math. Hungar., 142:2 (2014), 384–402 | DOI | MR | Zbl

[42] Semadeni Z., Banach Spaces of Continuous Functions, Mon. Mat., 55, PWA, Warszawa, 1971 | MR

[43] Stone M. N., “Applications of the theory of Boolean rings to general topology”, Trans. Am. Math. Soc., 41 (1937), 375–481 | DOI | MR | Zbl

[44] Young W. H., “On upper and lower integration”, Proc. London Math. Soc. Ser. 2, 2 (1905), 52–66 | DOI | MR

[45] Young W. H., “A new method in the theory of integration”, Proc. London Math. Soc. Ser. 2, 9 (1911), 15–50 | DOI | MR

[46] Zakharov V. K., “Functional characterization of absolute and Dedekind completion”, Bull. Acad. Polon. Sci. Ser. Math., 39:5–6 (1981), 293–297 | MR

[47] Zakharov V. K., “Some perfect preimages connected with extensions of the family of continuous functions”, Coll. Math. Soc. János Bolyai, 41 (1985), 703–728 | MR | Zbl

[48] Zakharov V. K., “On functions connected with absolute, Dedekind completion, and divisible envelope”, Period. Math. Hungar., 18:1 (1987), 17–26 | DOI | MR | Zbl

[49] Zakharov V. K., “On functions connected with sequential absolute, Cantor completion, and classical ring of quotients”, Period. Math. Hungar., 19:2 (1988), 113–133 | DOI | MR | Zbl

[50] Zakharov V. K., “Alexandrovian cover and Sierpińskian extension”, Stud. Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl