Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_2_a13, author = {A. I. Shtern}, title = {A~difference property for functions with bounded second differences on amenable topological groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {227--235}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/} }
TY - JOUR AU - A. I. Shtern TI - A~difference property for functions with bounded second differences on amenable topological groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 227 EP - 235 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/ LA - ru ID - FPM_2014_19_2_a13 ER -
%0 Journal Article %A A. I. Shtern %T A~difference property for functions with bounded second differences on amenable topological groups %J Fundamentalʹnaâ i prikladnaâ matematika %D 2014 %P 227-235 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/ %G ru %F FPM_2014_19_2_a13
A. I. Shtern. A~difference property for functions with bounded second differences on amenable topological groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 227-235. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/
[1] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975
[2] Shtern A. I., “Variant teoremy Van der Vardena i dokazatelstvo gipotezy Mischenko dlya gomomorfizmov lokalno kompaktnykh grupp”, Izv. RAN. Ser. mat., 72:1 (2008), 183–224 | DOI | MR | Zbl
[3] Balcerzak M., Kotlicka E., Wojdowski W., “Difference functions for functions with the Baire property”, Aequationes Math., 57:2–3 (1999), 278–287 | DOI | MR | Zbl
[4] De Bruijn N. G., “Functions whose differences belong to a given class”, Nieuw Arch. Wisk. (2), 23 (1951), 194–218 | MR | Zbl
[5] De Bruijn N. G., “A difference property for Riemann integrable functions and for some similar classes of functions”, Nederl. Akad. Wetensch. Proc. Ser. A, 55, \it Indag. Math., 14 (1952), 145–151 | MR | Zbl
[6] Carroll F. W., “Difference properties for continuity and Riemann integrability on locally compact groups”, Trans. Am. Math. Soc., 102 (1962), 284–292 | DOI | MR | Zbl
[7] Carroll F. W., Koehl F. S., “Difference properties for Banach-valued functions on compact groups”, Nederl. Akad. Wetensch. Proc. Ser. A, 72 (1969), 327–332 | DOI | MR | Zbl
[8] Erdős P., “A theorem on the Riemann integral”, Nederl. Akad. Wetensch. Proc. Ser. A, 55, \it Indag. Math., 14 (1952), 142–144 | MR | Zbl
[9] Hofmann K.-H., Morris S. A., The Structure of Compact Groups, Walter de Gruyter, Berlin, 1998 | MR | Zbl
[10] Keleti T., Difference functions of periodic measurable functions, Ph. D. thesis, Eőtvős Loránd Univ., Budapest, 1996 http://www.cs.elte.hu/phd_th/
[11] Keleti T., “Difference functions of periodic measurable functions”, Fund. Math., 157 (1998), 15–32 | MR | Zbl
[12] Kemperman J. H. B., “A general functional equation”, Trans. Am. Math. Soc., 86 (1957), 28–56 | DOI | MR | Zbl
[13] Koehl F. S., “Difference properties for Banach-valued functions”, Math. Ann., 181 (1969), 288–296 | DOI | MR | Zbl
[14] Laczkovich M., “Functions with measurable differences”, Acta Math. Hungar., 35 (1980), 217–235 | DOI | MR | Zbl
[15] Laczkovich M., “On the difference property of the class of pointwise discontinuous functions and of some related classes”, Can. J. Math., 36:4 (1984), 756–768 | DOI | MR | Zbl
[16] Shtern A. I., “A very strong difference property for semisimple compact connected Lie groups”, Russ. J. Math. Phys., 18:2 (2011), 211–215 | DOI | MR | Zbl
[17] Sierpiński W., Hypothèse du continu, Subwenc. Fund. Kultur. Narod., Warsaw, 1934 | Zbl