A~difference property for functions with bounded second differences on amenable topological groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 227-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a topological group. For a function $f\colon G\to\mathbb R$ and $h\in G$, the right difference function $\Delta_hf$ is defined by $\Delta_hf(g)=f(gh)-f(g)$ ($g\in G$). A function $H\colon G\to\mathbb R$ is said to be additive if it satisfies the Cauchy functional equation $H(g+h)=H(g)+H(h)$ for every $g, h\in G$. A class $F$ of real-valued functions defined on $G$ is said to have the difference property if, for every function $f\colon G\to\mathbb R$ satisfying $\Delta_hf\in F$ for every $h\in G$, there is an additive function $H$ such that $f-H\in F$. The Erdős conjecture claiming that the class of continuous functions on $\mathbb R$ has the difference property was proved by de Bruijn; later on, Carroll and Koehl proved a similar result for the compact Abelian groups and, under an additional assumption, for the compact metric groups, namely, under the assumption that all functions of the form $\nabla_hf(g)=f(hg)-f(g)$, $g\in G$, are Haar measurable for every $h\in G$. One of the consequences of this assumption is the boundedness of the function $\{g,h\}\mapsto f(gh)-f(g)-f(h)+f(e)$, $g,h\in G$, for every function $f$ on a compact group $G$ for which the difference functions $\Delta_hf$ are continuous for every $h\in G$ and the functions $\nabla_hf$ are Haar measurable for every $h\in G$ ($e$ stands for the identity element of the group $G$). In the present paper, we consider the difference property under the very strong assumption that the function $\{g,h\}\mapsto f(gh)-f(g)-f(h)+f(e)$, $g,h\in G$, is bounded. This assumption enables us to obtain results concerning difference properties not only for functions on groups but also for functions on homogeneous spaces.
@article{FPM_2014_19_2_a13,
     author = {A. I. Shtern},
     title = {A~difference property for functions with bounded second differences on amenable topological groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--235},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - A~difference property for functions with bounded second differences on amenable topological groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 227
EP  - 235
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/
LA  - ru
ID  - FPM_2014_19_2_a13
ER  - 
%0 Journal Article
%A A. I. Shtern
%T A~difference property for functions with bounded second differences on amenable topological groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 227-235
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/
%G ru
%F FPM_2014_19_2_a13
A. I. Shtern. A~difference property for functions with bounded second differences on amenable topological groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 227-235. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a13/

[1] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975

[2] Shtern A. I., “Variant teoremy Van der Vardena i dokazatelstvo gipotezy Mischenko dlya gomomorfizmov lokalno kompaktnykh grupp”, Izv. RAN. Ser. mat., 72:1 (2008), 183–224 | DOI | MR | Zbl

[3] Balcerzak M., Kotlicka E., Wojdowski W., “Difference functions for functions with the Baire property”, Aequationes Math., 57:2–3 (1999), 278–287 | DOI | MR | Zbl

[4] De Bruijn N. G., “Functions whose differences belong to a given class”, Nieuw Arch. Wisk. (2), 23 (1951), 194–218 | MR | Zbl

[5] De Bruijn N. G., “A difference property for Riemann integrable functions and for some similar classes of functions”, Nederl. Akad. Wetensch. Proc. Ser. A, 55, \it Indag. Math., 14 (1952), 145–151 | MR | Zbl

[6] Carroll F. W., “Difference properties for continuity and Riemann integrability on locally compact groups”, Trans. Am. Math. Soc., 102 (1962), 284–292 | DOI | MR | Zbl

[7] Carroll F. W., Koehl F. S., “Difference properties for Banach-valued functions on compact groups”, Nederl. Akad. Wetensch. Proc. Ser. A, 72 (1969), 327–332 | DOI | MR | Zbl

[8] Erdős P., “A theorem on the Riemann integral”, Nederl. Akad. Wetensch. Proc. Ser. A, 55, \it Indag. Math., 14 (1952), 142–144 | MR | Zbl

[9] Hofmann K.-H., Morris S. A., The Structure of Compact Groups, Walter de Gruyter, Berlin, 1998 | MR | Zbl

[10] Keleti T., Difference functions of periodic measurable functions, Ph. D. thesis, Eőtvős Loránd Univ., Budapest, 1996 http://www.cs.elte.hu/phd_th/

[11] Keleti T., “Difference functions of periodic measurable functions”, Fund. Math., 157 (1998), 15–32 | MR | Zbl

[12] Kemperman J. H. B., “A general functional equation”, Trans. Am. Math. Soc., 86 (1957), 28–56 | DOI | MR | Zbl

[13] Koehl F. S., “Difference properties for Banach-valued functions”, Math. Ann., 181 (1969), 288–296 | DOI | MR | Zbl

[14] Laczkovich M., “Functions with measurable differences”, Acta Math. Hungar., 35 (1980), 217–235 | DOI | MR | Zbl

[15] Laczkovich M., “On the difference property of the class of pointwise discontinuous functions and of some related classes”, Can. J. Math., 36:4 (1984), 756–768 | DOI | MR | Zbl

[16] Shtern A. I., “A very strong difference property for semisimple compact connected Lie groups”, Russ. J. Math. Phys., 18:2 (2011), 211–215 | DOI | MR | Zbl

[17] Sierpiński W., Hypothèse du continu, Subwenc. Fund. Kultur. Narod., Warsaw, 1934 | Zbl