Arithmetical rings and quasi-projective ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 207-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a commutative ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module can be extended to an endomorphism of the module $A_A$. These results are proved with the use of some general results on invariant arithmetical rings.
@article{FPM_2014_19_2_a10,
     author = {A. A. Tuganbaev},
     title = {Arithmetical rings and quasi-projective ideals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {207--211},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a10/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Arithmetical rings and quasi-projective ideals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 207
EP  - 211
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a10/
LA  - ru
ID  - FPM_2014_19_2_a10
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Arithmetical rings and quasi-projective ideals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 207-211
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a10/
%G ru
%F FPM_2014_19_2_a10
A. A. Tuganbaev. Arithmetical rings and quasi-projective ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 207-211. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a10/

[1] Abuhlail J., Jarrar M., Kabbaj S., “Commutative rings in which every finitely generated ideal is quasi-projective”, J. Pure Appl. Algebra, 215 (2011), 2504–2511 | DOI | MR | Zbl

[2] Tuganbaev A. A., “Multiplication modules”, J. Math. Sci., 123:2 (2004), 3839–3905 | DOI | MR | Zbl

[3] Tuganbaev A. A., Semidistributive Modules and Rings., Kluwer Academic, Dordrecht, 1998 | MR | Zbl

[4] Wisbauer R., Foundations of Module and Ring Theory., Gordon and Breach, Philadelphia, 1991 | MR | Zbl