Arithmetical rings and quasi-projective ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 207-211
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a commutative ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module can be extended to an endomorphism of the module $A_A$. These results are proved with the use of some general results on invariant arithmetical rings.
@article{FPM_2014_19_2_a10,
author = {A. A. Tuganbaev},
title = {Arithmetical rings and quasi-projective ideals},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {207--211},
year = {2014},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a10/}
}
A. A. Tuganbaev. Arithmetical rings and quasi-projective ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 207-211. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a10/
[1] Abuhlail J., Jarrar M., Kabbaj S., “Commutative rings in which every finitely generated ideal is quasi-projective”, J. Pure Appl. Algebra, 215 (2011), 2504–2511 | DOI | MR | Zbl
[2] Tuganbaev A. A., “Multiplication modules”, J. Math. Sci., 123:2 (2004), 3839–3905 | DOI | MR | Zbl
[3] Tuganbaev A. A., Semidistributive Modules and Rings., Kluwer Academic, Dordrecht, 1998 | MR | Zbl
[4] Wisbauer R., Foundations of Module and Ring Theory., Gordon and Breach, Philadelphia, 1991 | MR | Zbl