A~remark on commutative arithmetic rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 21-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a commutative ring with identity $R$ is arithmetic (i.e., the ideal lattice of $R$ is distributive) if and only if for any finitely generated (or any finitely presented) $R$-module $M$ and any ideal $I$ of $R$ the equality $I+\operatorname{Ann}M=\operatorname{Ann}(M/IM)$ holds.
@article{FPM_2014_19_2_a1,
     author = {E. S. Golod},
     title = {A~remark on commutative arithmetic rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {21--23},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a1/}
}
TY  - JOUR
AU  - E. S. Golod
TI  - A~remark on commutative arithmetic rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 21
EP  - 23
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a1/
LA  - ru
ID  - FPM_2014_19_2_a1
ER  - 
%0 Journal Article
%A E. S. Golod
%T A~remark on commutative arithmetic rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 21-23
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a1/
%G ru
%F FPM_2014_19_2_a1
E. S. Golod. A~remark on commutative arithmetic rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 21-23. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a1/

[1] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009