A remark on commutative arithmetic rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 21-23
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a commutative ring with identity $R$ is arithmetic (i.e., the ideal lattice of $R$ is distributive) if and only if for any finitely generated (or any finitely presented) $R$-module $M$ and any ideal $I$ of $R$ the equality $I+\operatorname{Ann}M=\operatorname{Ann}(M/IM)$ holds.
@article{FPM_2014_19_2_a1,
author = {E. S. Golod},
title = {A~remark on commutative arithmetic rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {21--23},
year = {2014},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a1/}
}
E. S. Golod. A remark on commutative arithmetic rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 21-23. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a1/
[1] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009