Retractable and coretractable modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 5-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study mod-retractable modules, CSL-modules, fully Kasch modules, and their interrelations. Right fully Kasch rings are described. It is proved that for a module $M$ of finite length, the following conditions are equivalent. (1) In the category $\sigma(M)$, every module is retractable. (2) In the category $\sigma(M)$, every module is coretractable. (3) $M$ is a CSL-module. (4) $\mathrm{Ext}_R^1(S_1,S_2)=0$ for any two simple nonisomorphic modules $S_1,S_2\in\sigma(M)$. (5) $M$ is a fully Kasch module.
@article{FPM_2014_19_2_a0,
     author = {A. N. Abyzov and A. A. Tuganbaev},
     title = {Retractable and coretractable modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. A. Tuganbaev
TI  - Retractable and coretractable modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 5
EP  - 20
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/
LA  - ru
ID  - FPM_2014_19_2_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. A. Tuganbaev
%T Retractable and coretractable modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 5-20
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/
%G ru
%F FPM_2014_19_2_a0
A. N. Abyzov; A. A. Tuganbaev. Retractable and coretractable modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/