Retractable and coretractable modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study mod-retractable modules, CSL-modules, fully Kasch modules, and their interrelations. Right fully Kasch rings are described. It is proved that for a module $M$ of finite length, the following conditions are equivalent. (1) In the category $\sigma(M)$, every module is retractable. (2) In the category $\sigma(M)$, every module is coretractable. (3) $M$ is a CSL-module. (4) $\mathrm{Ext}_R^1(S_1,S_2)=0$ for any two simple nonisomorphic modules $S_1,S_2\in\sigma(M)$. (5) $M$ is a fully Kasch module.
@article{FPM_2014_19_2_a0,
     author = {A. N. Abyzov and A. A. Tuganbaev},
     title = {Retractable and coretractable modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. A. Tuganbaev
TI  - Retractable and coretractable modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 5
EP  - 20
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/
LA  - ru
ID  - FPM_2014_19_2_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. A. Tuganbaev
%T Retractable and coretractable modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 5-20
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/
%G ru
%F FPM_2014_19_2_a0
A. N. Abyzov; A. A. Tuganbaev. Retractable and coretractable modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/FPM_2014_19_2_a0/

[1] Abyzov A. N., “O nekotorykh klassakh poluartinovykh kolets”, Sib. mat. zhurn., 53:5 (2012), 955-966 | MR

[2] Alaoui M., Haily A., “Perfect rings for which the converse of Schur's lemma holds”, Publ. Mat., 45:1 (2001), 219–222 | MR | Zbl

[3] Albu T., Wisbauer R., “Kasch modules”, Advances in Ring Theory (Granville, OH, 1996), Trends Math., eds. S. K. Jain, S. Tariq Rizvi, Birkhäuser, Boston, 1997, 1–16 | MR | Zbl

[4] Amini B., Ershad M., Sharif H., “Coretractable modules”, J. Aust. Math. Soc. Ser. A, 86:3 (2009), 289–304 | DOI | MR | Zbl

[5] Baccella G., “Exchange property and the natural preorder between simple modules over semi-Artinian rings”, J. Algebra, 253 (2002), 133–166 | DOI | MR | Zbl

[6] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers Math., Birkhäuser, Boston, 2006 | MR | Zbl

[7] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman, London, 1994 | Zbl

[8] Greg M., Markus S., “Extensions of simple modules and the converse of Schur's lemma”, Advances in Ring Theory, Trends Math., Birkhäuser, Boston, 2010, 229–237 | MR | Zbl

[9] Hamza H., “$I_0$-rings and $I_0$-modules”, Math. J. Okayama Univ., 40 (1998), 91–97 | MR

[10] Kosan M. T., Zemlicka J., “Mod-retractable rings”, Commun. Algebra, 42:3 (2014), 998–1010 | DOI | MR | Zbl

[11] Tolooei Y., Vedadi M. R., “On rings whose modules have nonzero homomorphisms to nonzero submodules”, Publ. Mat., 57:1 (2013), 107–122 | DOI | MR | Zbl

[12] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[13] Vanaja N., “All finitely generated M-subgenerated modules are extending”, Commun. Algebra, 24:2 (1996), 543–572 | DOI | MR | Zbl

[14] Ware R., Zelmanowitz J., “Simple endomorphism rings”, Am. Math. Mon., 77:9 (1970), 987–989 | DOI | MR | Zbl

[15] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl

[16] Yu H. P., “On quasi-duo rings”, Glasgow Math. J., 37 (1995), 21–31 | DOI | MR | Zbl

[17] Zemlicka J., “Completely coretractable rings”, Bull. Iran. Math. Soc., 39:3 (2013), 523–528 | MR | Zbl