Homologies of moduli space $\mathcal M_{2,1}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 45-63
We consider the open moduli space $\mathcal M_{2,1}$ of complex curves of genus 2 with one marked point. Using the language of chord diagrams, we describe the cell structure of $\mathcal M_{2,1}$ and cell adjacency. This allows us to construct matrices of boundary operators and compute Betty numbers of $\mathcal M_{2,1}$ over $\mathbb Q$.
@article{FPM_2014_19_1_a4,
author = {Yu. Yu. Kochetkov},
title = {Homologies of moduli space~$\mathcal M_{2,1}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {45--63},
year = {2014},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a4/}
}
Yu. Yu. Kochetkov. Homologies of moduli space $\mathcal M_{2,1}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 45-63. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a4/
[1] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010
[2] Kochetkov Yu. Yu., “Prostranstva modulei $\mathcal M_{2,1}$ i $\mathcal M_{3,1}$”, Funkts. analiz i ego pril., 44:2 (2010), 48–56 | DOI | MR | Zbl
[3] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Invent. Math., 85 (1986), 457–485 | DOI | MR | Zbl
[4] Kontzevich M., “Intersection theory on the moduli space of curves and matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR