Homologies of moduli space~$\mathcal M_{2,1}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 45-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the open moduli space $\mathcal M_{2,1}$ of complex curves of genus 2 with one marked point. Using the language of chord diagrams, we describe the cell structure of $\mathcal M_{2,1}$ and cell adjacency. This allows us to construct matrices of boundary operators and compute Betty numbers of $\mathcal M_{2,1}$ over $\mathbb Q$.
@article{FPM_2014_19_1_a4,
     author = {Yu. Yu. Kochetkov},
     title = {Homologies of moduli space~$\mathcal M_{2,1}$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {45--63},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a4/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Homologies of moduli space~$\mathcal M_{2,1}$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 45
EP  - 63
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a4/
LA  - ru
ID  - FPM_2014_19_1_a4
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Homologies of moduli space~$\mathcal M_{2,1}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 45-63
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a4/
%G ru
%F FPM_2014_19_1_a4
Yu. Yu. Kochetkov. Homologies of moduli space~$\mathcal M_{2,1}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 45-63. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a4/

[1] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[2] Kochetkov Yu. Yu., “Prostranstva modulei $\mathcal M_{2,1}$ i $\mathcal M_{3,1}$”, Funkts. analiz i ego pril., 44:2 (2010), 48–56 | DOI | MR | Zbl

[3] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Invent. Math., 85 (1986), 457–485 | DOI | MR | Zbl

[4] Kontzevich M., “Intersection theory on the moduli space of curves and matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR