Geometry of totally real Galois fields of degree~4
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 33-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a totally real Galois field $K$ of degree 4 as the linear coordinate space $\mathbb Q^4\subset\mathbb R^4$. An element $k\in K$ is called strictly positive if all its conjugates are positive. The set of strictly positive elements is a convex cone in $\mathbb Q^4$. The convex hull of strictly positive integral elements is a convex subset of this cone and its boundary $\Gamma$ is an infinite union of $3$-dimensional polyhedrons. The group $U$ of strictly positive units acts on $\Gamma$: the action of a strictly positive unit permutes polyhedrons. Examples of fundamental domains of this action are the object of study in this work.
@article{FPM_2014_19_1_a3,
author = {Yu. Yu. Kochetkov},
title = {Geometry of totally real {Galois} fields of degree~4},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {33--44},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a3/}
}
Yu. Yu. Kochetkov. Geometry of totally real Galois fields of degree~4. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a3/