Geometry of totally real Galois fields of degree~4
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a totally real Galois field $K$ of degree 4 as the linear coordinate space $\mathbb Q^4\subset\mathbb R^4$. An element $k\in K$ is called strictly positive if all its conjugates are positive. The set of strictly positive elements is a convex cone in $\mathbb Q^4$. The convex hull of strictly positive integral elements is a convex subset of this cone and its boundary $\Gamma$ is an infinite union of $3$-dimensional polyhedrons. The group $U$ of strictly positive units acts on $\Gamma$: the action of a strictly positive unit permutes polyhedrons. Examples of fundamental domains of this action are the object of study in this work.
@article{FPM_2014_19_1_a3,
     author = {Yu. Yu. Kochetkov},
     title = {Geometry of totally real {Galois} fields of degree~4},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Geometry of totally real Galois fields of degree~4
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 33
EP  - 44
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a3/
LA  - ru
ID  - FPM_2014_19_1_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Geometry of totally real Galois fields of degree~4
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 33-44
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a3/
%G ru
%F FPM_2014_19_1_a3
Yu. Yu. Kochetkov. Geometry of totally real Galois fields of degree~4. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a3/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[2] Vinberg E. B., Chastnoe soobschenie

[3] Kochetkov Yu. Yu., “O geometrii kubicheskikh polei Galua”, Mat. zametki, 89:1 (2011), 139–144 | DOI | MR | Zbl