Modules in which sums or intersections of two direct summands are direct summands
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains new characterizations of SSP-modules, SIP-modules, $\mathrm D_3$-modules, and $\mathrm C_3$-modules. These characterizations are used for the proof of new and known results related to SSP-modules and SIP-modules. We also apply obtained results to endo-regular modules.
@article{FPM_2014_19_1_a0,
     author = {A. N. Abyzov and A. A. Tuganbaev},
     title = {Modules in which sums or intersections of two direct summands are direct summands},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. A. Tuganbaev
TI  - Modules in which sums or intersections of two direct summands are direct summands
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 3
EP  - 11
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/
LA  - ru
ID  - FPM_2014_19_1_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. A. Tuganbaev
%T Modules in which sums or intersections of two direct summands are direct summands
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 3-11
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/
%G ru
%F FPM_2014_19_1_a0
A. N. Abyzov; A. A. Tuganbaev. Modules in which sums or intersections of two direct summands are direct summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/