Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2014_19_1_a0, author = {A. N. Abyzov and A. A. Tuganbaev}, title = {Modules in which sums or intersections of two direct summands are direct summands}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--11}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/} }
TY - JOUR AU - A. N. Abyzov AU - A. A. Tuganbaev TI - Modules in which sums or intersections of two direct summands are direct summands JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 3 EP - 11 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/ LA - ru ID - FPM_2014_19_1_a0 ER -
A. N. Abyzov; A. A. Tuganbaev. Modules in which sums or intersections of two direct summands are direct summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/
[1] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[2] Alkan M., Harmanci A., “On summand sum and summand intersection property of modules”, Turkish J. Math., 26 (2002), 131–147 | MR | Zbl
[3] Amin I., Ibrahim Y., Yousif M., “$\mathrm D_3$-modules”, Commun. Algebra, 42:2 (2014), 578–592 | DOI | MR | Zbl
[4] Garcia J. L., “Properties of direct summands of modules”, Commun. Algebra, 17 (1989), 73–92 | DOI | MR | Zbl
[5] Hausen J., “Modules with the summand intersection property”, Commun. Algebra, 17 (1989), 135–148 | DOI | MR | Zbl
[6] Kaplansky I., Commutative Rings, Univ. Chicago Press, Chicago, 1974 | MR | Zbl
[7] Khuri S. M., “Endomorphism rings of nonsingular modules”, Ann. Sci. Math. Quebec., 4 (1980), 145–152 | MR | Zbl
[8] Khuri S. M., “Nonsingular retractable modules and their endomorphism rings”, Bull. Austral. Math. Soc., 43 (1991), 63–71 | DOI | MR | Zbl
[9] Lee G., Rizvi S. T., Roman C. S., “Rickart modules”, Commun. Algebra, 38:11 (2010), 4005–4027 | DOI | MR | Zbl
[10] Lee G., Rizvi S. T., Roman C. S., “Dual Rickart modules”, Commun. Algebra, 39:11 (2011), 4036–4058 | DOI | MR | Zbl
[11] Lee G., Rizvi S. T., Roman C. S., “Direct sums of Rickart modules”, J. Algebra, 353:1 (2012), 62–78 | DOI | MR | Zbl
[12] Mohamed S. H., Muller B. J., Continuous and Discrete Modules, London Math. Soc. Lect. Notes Ser., 147, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[13] Nicholson W. K., Zhou Y., “Semiregular morphisms”, Commun. Algebra, 34 (2006), 219–233 | DOI | MR | Zbl
[14] Wilson G. V., “Modules with the direct summand intersection property”, Commun. Algebra, 14 (1986), 21–38 | DOI | MR | Zbl