Modules in which sums or intersections of two direct summands are direct summands
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains new characterizations of SSP-modules, SIP-modules, $\mathrm D_3$-modules, and $\mathrm C_3$-modules. These characterizations are used for the proof of new and known results related to SSP-modules and SIP-modules. We also apply obtained results to endo-regular modules.
@article{FPM_2014_19_1_a0,
author = {A. N. Abyzov and A. A. Tuganbaev},
title = {Modules in which sums or intersections of two direct summands are direct summands},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--11},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/}
}
TY - JOUR AU - A. N. Abyzov AU - A. A. Tuganbaev TI - Modules in which sums or intersections of two direct summands are direct summands JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2014 SP - 3 EP - 11 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/ LA - ru ID - FPM_2014_19_1_a0 ER -
A. N. Abyzov; A. A. Tuganbaev. Modules in which sums or intersections of two direct summands are direct summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/