Modules in which sums or intersections of two direct summands are direct summands
Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains new characterizations of SSP-modules, SIP-modules, $\mathrm D_3$-modules, and $\mathrm C_3$-modules. These characterizations are used for the proof of new and known results related to SSP-modules and SIP-modules. We also apply obtained results to endo-regular modules.
@article{FPM_2014_19_1_a0,
     author = {A. N. Abyzov and A. A. Tuganbaev},
     title = {Modules in which sums or intersections of two direct summands are direct summands},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - A. A. Tuganbaev
TI  - Modules in which sums or intersections of two direct summands are direct summands
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2014
SP  - 3
EP  - 11
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/
LA  - ru
ID  - FPM_2014_19_1_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A A. A. Tuganbaev
%T Modules in which sums or intersections of two direct summands are direct summands
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2014
%P 3-11
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/
%G ru
%F FPM_2014_19_1_a0
A. N. Abyzov; A. A. Tuganbaev. Modules in which sums or intersections of two direct summands are direct summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 19 (2014) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2014_19_1_a0/

[1] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[2] Alkan M., Harmanci A., “On summand sum and summand intersection property of modules”, Turkish J. Math., 26 (2002), 131–147 | MR | Zbl

[3] Amin I., Ibrahim Y., Yousif M., “$\mathrm D_3$-modules”, Commun. Algebra, 42:2 (2014), 578–592 | DOI | MR | Zbl

[4] Garcia J. L., “Properties of direct summands of modules”, Commun. Algebra, 17 (1989), 73–92 | DOI | MR | Zbl

[5] Hausen J., “Modules with the summand intersection property”, Commun. Algebra, 17 (1989), 135–148 | DOI | MR | Zbl

[6] Kaplansky I., Commutative Rings, Univ. Chicago Press, Chicago, 1974 | MR | Zbl

[7] Khuri S. M., “Endomorphism rings of nonsingular modules”, Ann. Sci. Math. Quebec., 4 (1980), 145–152 | MR | Zbl

[8] Khuri S. M., “Nonsingular retractable modules and their endomorphism rings”, Bull. Austral. Math. Soc., 43 (1991), 63–71 | DOI | MR | Zbl

[9] Lee G., Rizvi S. T., Roman C. S., “Rickart modules”, Commun. Algebra, 38:11 (2010), 4005–4027 | DOI | MR | Zbl

[10] Lee G., Rizvi S. T., Roman C. S., “Dual Rickart modules”, Commun. Algebra, 39:11 (2011), 4036–4058 | DOI | MR | Zbl

[11] Lee G., Rizvi S. T., Roman C. S., “Direct sums of Rickart modules”, J. Algebra, 353:1 (2012), 62–78 | DOI | MR | Zbl

[12] Mohamed S. H., Muller B. J., Continuous and Discrete Modules, London Math. Soc. Lect. Notes Ser., 147, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[13] Nicholson W. K., Zhou Y., “Semiregular morphisms”, Commun. Algebra, 34 (2006), 219–233 | DOI | MR | Zbl

[14] Wilson G. V., “Modules with the direct summand intersection property”, Commun. Algebra, 14 (1986), 21–38 | DOI | MR | Zbl