Chebyshev polynomials, Zolotarev polynomials, and plane trees
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 161-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

A polynomial with exactly two critical values is called a generalized Chebyshev polynomial (or Shabat polynomial). A polynomial with exactly three critical values is called a Zolotarev polynomial. Two Chebyshev polynomials $f$ and $g$ are called $\mathrm Z$-homotopic if there exists a family $p_\alpha$, $\alpha\in[0,1]$, where $p_0=f$, $p_1=g$, and $p_\alpha$ is a Zolotarev polynomial if $\alpha\in(0,1)$. As each Chebyshev polynomial defines a plane tree (and vice versa), $\mathrm Z$-homotopy can be defined for plane trees. In this work, we prove some necessary geometric conditions for the existence of $\mathrm Z$-homotopy of plane trees, describe $\mathrm Z$-homotopy for trees with five and six edges, and study one interesting example in the class of trees with seven edges.
@article{FPM_2013_18_6_a9,
     author = {Yu. Yu. Kochetkov},
     title = {Chebyshev polynomials, {Zolotarev} polynomials, and plane trees},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a9/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Chebyshev polynomials, Zolotarev polynomials, and plane trees
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 161
EP  - 170
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a9/
LA  - ru
ID  - FPM_2013_18_6_a9
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Chebyshev polynomials, Zolotarev polynomials, and plane trees
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 161-170
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a9/
%G ru
%F FPM_2013_18_6_a9
Yu. Yu. Kochetkov. Chebyshev polynomials, Zolotarev polynomials, and plane trees. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 161-170. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a9/

[1] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010