On the geometrization of the absolute Galois group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 145-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for exhibiting the equation of an algebraic curve for a large class of dessins on an orientable closed surface is developed, and the action of the absolute Galois group is realized as modification of the associated cell structures. An application to quadratic differentials is discussed. A Galois invariant measure on $\mathbb{CP}(1)$ is introduced. Towers of (flat) refinements of dessins are introduced that relate the inverse system structure of the absolute Galois group to geometric/combinatorial structures on surfaces.
@article{FPM_2013_18_6_a8,
     author = {A. Kamalinejad},
     title = {On the geometrization of the absolute {Galois} group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--159},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a8/}
}
TY  - JOUR
AU  - A. Kamalinejad
TI  - On the geometrization of the absolute Galois group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 145
EP  - 159
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a8/
LA  - ru
ID  - FPM_2013_18_6_a8
ER  - 
%0 Journal Article
%A A. Kamalinejad
%T On the geometrization of the absolute Galois group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 145-159
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a8/
%G ru
%F FPM_2013_18_6_a8
A. Kamalinejad. On the geometrization of the absolute Galois group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 145-159. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a8/

[1] Artamkin I. V., Levitskaya Yu. A., Shabat G. B., “Primery semeistv shtrebelevykh differentsialov na giperellipticheskikh krivykh”, Funkts. analiz i ego pril., 43:2 (2009), 73–75 | DOI | MR | Zbl

[2] Shabat G. B., Voevodskii V., “Pravilnye triangulyatsii rimanovykh poverkhnostei i krivye nad polyami algebraicheskikh chisel”, DAN SSSR, 304:2 (1989), 265–268 | MR | Zbl

[3] Arbarello E., Cornalba M., “Jenkins–Strebel differentials”, Rend. Lincei Mat. Appl., 21 (2010), 115–157 | DOI | MR | Zbl

[4] Buff X., Lochak P., et al., Moduli Spaces of Curves, Mapping Class Groups and Field Theory, Amer. Math. Soc., 2003 | MR | Zbl

[5] Dunin-Barkowski P., Popolitovy A., Shabat G., Sleptsov A., On the homology of certain smooth covers of moduli spaces of algebraic curves, 2010, arXiv: 1006.4322v2

[6] Girondo E., González-Diez G., “A note on the action of the absolute Galois group on dessins”, Bull. Lond. Math. Soc., 39:5 (2007), 721–723 | DOI | MR | Zbl

[7] Gardiner F., Lakic N., Quasiconformal Teichmüller Theory, Amer. Math. Soc., 2000 | MR

[8] Ihara Y., “Braids, Galois groups and some arithmetical functions”, Proc. ICM-90, v. 1, Springer, Kyoto, 1990, 99–120 | MR

[9] Lochak P., http://www.math.jussieu.fr/~lochak

[10] Malle G., Matzat B. H., Inverse Galois Theory, Springer, New York, 1999 | MR

[11] L. Schneps (ed.), The Grothendieck Theory of Dessin d'Enfants, Cambridge Univ. Press, Cambridge, 1994 | MR

[12] Schneps L., http://www.math.jussieu.fr/~leila/

[13] Strebel K., Quadratic Differentials, Springer, New York, 1984 | MR | Zbl

[14] Sury B., The Congruence Subgroup Problem, Hindustan Book Agency, 2003 | MR

[15] Wood M., Belyi-extending maps and the Galois action on dessin d'enfants, 2005, arXiv: math/0304489v2 | MR

[16] Zapponi L., “Fleurs, arbes et cellules: un invariant galoisien pour une famille d'arbes”, Compositio Math., 122 (2000), 113–133 | DOI | MR | Zbl