Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_6_a7, author = {A. K. Zvonkin}, title = {Enumeration of weighted plane trees}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {135--144}, publisher = {mathdoc}, volume = {18}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/} }
A. K. Zvonkin. Enumeration of weighted plane trees. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 135-144. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/
[1] Adrianov N. M., Zvonkin A. K., “Vzveshennye derevya s primitivnymi gruppami vraschenii rëber”, Fundament. i prikl. mat., 18:6 (2013), 5–50
[2] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[3] Goulden I. P., Jackson D. M., “The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group”, Eur. J. Combin., 13 (1992), 357–365 | DOI | MR | Zbl
[4] Kochetkov Yu. Yu., Enumeration of one class of plane weighted trees, 2013, arXiv: 1310.6208v1
[5] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
[6] Pakovich F., Zvonkin A. K., “Minimum degree of the difference of two polynomials over $\mathbb Q$, and weighted plane trees”, Selecta Math. (N.S.), 2014 (to appear) , 63 pp. ; arXiv: 1306.4141v1 | DOI
[7] Pakovich F., Zvonkin A. K., Minimum degree of the difference of two polynomials over $\mathbb Q$. Pt. II: Davenport–Zannier pairs, http://www.labri.fr/perso/zvonkin/
[8] Tutte W. T., “The number of planted plane trees with a given partition”, Am. Math. Mon., 71:3 (1964), 272–277 | DOI | MR | Zbl