Enumeration of weighted plane trees
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 135-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In weighted trees, all edges are endowed with positive integral weights. We enumerate weighted bicolored plane trees according to their weight and number of edges.
@article{FPM_2013_18_6_a7,
     author = {A. K. Zvonkin},
     title = {Enumeration of weighted plane trees},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/}
}
TY  - JOUR
AU  - A. K. Zvonkin
TI  - Enumeration of weighted plane trees
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 135
EP  - 144
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/
LA  - ru
ID  - FPM_2013_18_6_a7
ER  - 
%0 Journal Article
%A A. K. Zvonkin
%T Enumeration of weighted plane trees
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 135-144
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/
%G ru
%F FPM_2013_18_6_a7
A. K. Zvonkin. Enumeration of weighted plane trees. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 135-144. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/

[1] Adrianov N. M., Zvonkin A. K., “Vzveshennye derevya s primitivnymi gruppami vraschenii rëber”, Fundament. i prikl. mat., 18:6 (2013), 5–50

[2] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[3] Goulden I. P., Jackson D. M., “The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group”, Eur. J. Combin., 13 (1992), 357–365 | DOI | MR | Zbl

[4] Kochetkov Yu. Yu., Enumeration of one class of plane weighted trees, 2013, arXiv: 1310.6208v1

[5] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/

[6] Pakovich F., Zvonkin A. K., “Minimum degree of the difference of two polynomials over $\mathbb Q$, and weighted plane trees”, Selecta Math. (N.S.), 2014 (to appear) , 63 pp. ; arXiv: 1306.4141v1 | DOI

[7] Pakovich F., Zvonkin A. K., Minimum degree of the difference of two polynomials over $\mathbb Q$. Pt. II: Davenport–Zannier pairs, http://www.labri.fr/perso/zvonkin/

[8] Tutte W. T., “The number of planted plane trees with a given partition”, Am. Math. Mon., 71:3 (1964), 272–277 | DOI | MR | Zbl