Enumeration of weighted plane trees
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 135-144

Voir la notice de l'article provenant de la source Math-Net.Ru

In weighted trees, all edges are endowed with positive integral weights. We enumerate weighted bicolored plane trees according to their weight and number of edges.
@article{FPM_2013_18_6_a7,
     author = {A. K. Zvonkin},
     title = {Enumeration of weighted plane trees},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/}
}
TY  - JOUR
AU  - A. K. Zvonkin
TI  - Enumeration of weighted plane trees
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 135
EP  - 144
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/
LA  - ru
ID  - FPM_2013_18_6_a7
ER  - 
%0 Journal Article
%A A. K. Zvonkin
%T Enumeration of weighted plane trees
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 135-144
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/
%G ru
%F FPM_2013_18_6_a7
A. K. Zvonkin. Enumeration of weighted plane trees. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 135-144. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a7/