A differential equation on the cover function of the hexagonal lattice by the trivalent tree
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 91-94
Cet article a éte moissonné depuis la source Math-Net.Ru
We provide a differential equation on the cover function of the hexagonal lattice by the trivalent tree, formulated using the modular discriminant considered as a function on the hyperbolic plane.
@article{FPM_2013_18_6_a4,
author = {K. V. Golubev},
title = {A differential equation on the cover function of the hexagonal lattice by the trivalent tree},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {91--94},
year = {2013},
volume = {18},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/}
}
TY - JOUR AU - K. V. Golubev TI - A differential equation on the cover function of the hexagonal lattice by the trivalent tree JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 91 EP - 94 VL - 18 IS - 6 UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/ LA - ru ID - FPM_2013_18_6_a4 ER -
K. V. Golubev. A differential equation on the cover function of the hexagonal lattice by the trivalent tree. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 91-94. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/
[1] Belyi G. V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 267–276 | MR | Zbl
[2] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010
[3] Batchelor M., Brownlee P., Woods W., An equivariant covering map from the upper half plane to the complex plane minus a lattice, arXiv: 1203.5261
[4] Knapp A. W., Elliptic Curves, Princeton Univ. Press, Princeton, 1992 | MR | Zbl
[5] Whittaker E. T., Watson G. N., A Course in Modern Analysis, Cambridge Univ. Press, Cambridge, 1990