A differential equation on the cover function of the hexagonal lattice by the trivalent tree
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a differential equation on the cover function of the hexagonal lattice by the trivalent tree, formulated using the modular discriminant considered as a function on the hyperbolic plane.
@article{FPM_2013_18_6_a4,
     author = {K. V. Golubev},
     title = {A differential equation on the cover function of the hexagonal lattice by the trivalent tree},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/}
}
TY  - JOUR
AU  - K. V. Golubev
TI  - A differential equation on the cover function of the hexagonal lattice by the trivalent tree
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 91
EP  - 94
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/
LA  - ru
ID  - FPM_2013_18_6_a4
ER  - 
%0 Journal Article
%A K. V. Golubev
%T A differential equation on the cover function of the hexagonal lattice by the trivalent tree
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 91-94
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/
%G ru
%F FPM_2013_18_6_a4
K. V. Golubev. A differential equation on the cover function of the hexagonal lattice by the trivalent tree. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 91-94. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a4/

[1] Belyi G. V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 267–276 | MR | Zbl

[2] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[3] Batchelor M., Brownlee P., Woods W., An equivariant covering map from the upper half plane to the complex plane minus a lattice, arXiv: 1203.5261

[4] Knapp A. W., Elliptic Curves, Princeton Univ. Press, Princeton, 1992 | MR | Zbl

[5] Whittaker E. T., Watson G. N., A Course in Modern Analysis, Cambridge Univ. Press, Cambridge, 1990