Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_6_a1, author = {N. M. Adrianov and A. K. Zvonkin}, title = {Weighted trees with primitive edge rotation groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {5--50}, publisher = {mathdoc}, volume = {18}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a1/} }
N. M. Adrianov; A. K. Zvonkin. Weighted trees with primitive edge rotation groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 5-50. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a1/
[1] Adrianov N. M., “Klassifikatsiya primitivnykh grupp vraschenii rëber ploskikh derevev”, Fundament. i prikl. mat., 3:4 (1997), 1069–1083 | MR | Zbl
[2] Adrianov N. M., Kochetkov Yu. Yu., Suvorov A. D., “Ploskie derevya s isklyuchitelnymi primitivnymi gruppami vraschenii rëber”, Fundament. i prikl. mat., 3:4 (1997), 1085–1092 | MR | Zbl
[3] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, Izd-vo MTsNMO, M., 2010
[4] Matiyasevich Yu. V., “Vychislenie obobschënnykh polinomov Chebyshëva na kompyutere”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1996, no. 6, 59–61 | MR | Zbl
[5] Beukers F., Stewart C. L., “Neighboring powers”, J. Number Theory, 130 (2010), 660–679 | DOI | MR | Zbl
[6] Birch B. J., Chowla S., Hall M. (Jr.), Schinzel A., “On the difference $x^3-y^2$”, Det Kongelige Norske Videnskabers Selskabs Forhandlinger (Trondheim), 38 (1965), 65–69 | MR | Zbl
[7] Butler G., McKay J., “The transitive groups of degree up to eleven”, Commun. Algebra, 11:8 (1983), 863–911 | DOI | MR | Zbl
[8] Cassou-Noguès P., Couveignes J.-M., “Factorisations explicites de $g(y)-h(z)$”, Acta Arith., 87:4 (1999), 291–317 | MR | Zbl
[9] Frohardt D., Magaard K., “Composition factors of monodromy groups”, Ann. Math., 154 (2001), 327–345 | DOI | MR | Zbl
[10] Guralnick R., Thompson J., “Finite groups of genus zero”, J. Algebra, 131:1 (1990), 303–341 | DOI | MR | Zbl
[11] Hulpke A., “Constructing transitive permutation groups”, J. Symb. Comp., 39:1 (2005), 1–30 | DOI | MR | Zbl
[12] Jones G. A., “Primitive permutation groups containing a cycle”, Bull. Austr. Math. Soc., 89 (2014), 159–165 ; arXiv: 1209.5169v1 | DOI | MR
[13] Jordan C., “Théorèmes sur les groupes primitifs”, J. Math. Pures Appl., 16 (1871), 383–408
[14] Magaard K., Shpectorov S., Wang G., Generating sets of affine groups of low genus, 2011, arXiv: 1108.4833v1 | MR
[15] Müller P., “Primitive monodromy groups of polynomials”, Recent Developments in the Inverse Galois Problem, Contemp. Math., 186, Amer. Math. Soc., 1995, 385–401 | DOI | MR | Zbl
[16] Pakovich F., Zvonkin A. K., “Minimum degree of the difference of two polynomials over $\mathbb Q$, and weighted plane trees”, Selecta Math. New Ser., 2014 (to appear) , 63 pp. ; arXiv: 1306.4141v1 | DOI
[17] Pakovich F., Zvonkin A. K., Minimum degree of the difference of two polynomials over $\mathbb Q$. Pt. II: Davenport–Zannier pairs, In preparation. A preliminary version available at http://www.labri.fr/perso/zvonkin/
[18] Wang G., Genus zero systems for primitive groups of affine type, Ph. D. Thesis, Univ. of Birmingham, 2011
[19] Zannier U., “On Davenport's bound for the degree of $f^3-g^2$ and Riemann's existence theorem”, Acta Arith., 71:2 (1995), 107–137 | MR | Zbl