Weighted trees with primitive edge rotation groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 5-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R,S\in\mathbb C[x]$ be two coprime polynomials of the same degree with prescribed multiplicities of their roots. A classical problem of number theory actively studied during the last half-century is, what could be the minimum degree of the difference $T=R-S$. The theory of dessins d'enfants implies that such a minimum is attained if and only if the rational function $f=R/T$ is a Belyi function for a bicolored plane map all of whose faces except the outer one are of degree $1$. Such maps are called weighted trees, since they can be conveniently represented by plane trees whose edges are endowed with positive integral weights. It is well known that the absolute Galois group (the automorphism group of the field $\bar{\mathbb Q}$ of algebraic numbers) acts on dessins. An important invariant of this action is the edge rotation group, which is also the monodromy group of a ramified covering corresponding to the Belyi function. In this paper, we classify all weighted trees with primitive edge rotation groups. There are, up to the color exchange, $184$ such trees, which are subdivided into (at least) $85$ Galois orbits and generate $34$ primitive groups (the highest degree is $32$). This result may also be considered as a contribution to the classification of covering of genus $0$ with primitive monodromy groups in the framework of the Guralnick–Thompson conjecture.
@article{FPM_2013_18_6_a1,
     author = {N. M. Adrianov and A. K. Zvonkin},
     title = {Weighted trees with primitive edge rotation groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--50},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a1/}
}
TY  - JOUR
AU  - N. M. Adrianov
AU  - A. K. Zvonkin
TI  - Weighted trees with primitive edge rotation groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 5
EP  - 50
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a1/
LA  - ru
ID  - FPM_2013_18_6_a1
ER  - 
%0 Journal Article
%A N. M. Adrianov
%A A. K. Zvonkin
%T Weighted trees with primitive edge rotation groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 5-50
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a1/
%G ru
%F FPM_2013_18_6_a1
N. M. Adrianov; A. K. Zvonkin. Weighted trees with primitive edge rotation groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 6, pp. 5-50. http://geodesic.mathdoc.fr/item/FPM_2013_18_6_a1/

[1] Adrianov N. M., “Klassifikatsiya primitivnykh grupp vraschenii rëber ploskikh derevev”, Fundament. i prikl. mat., 3:4 (1997), 1069–1083 | MR | Zbl

[2] Adrianov N. M., Kochetkov Yu. Yu., Suvorov A. D., “Ploskie derevya s isklyuchitelnymi primitivnymi gruppami vraschenii rëber”, Fundament. i prikl. mat., 3:4 (1997), 1085–1092 | MR | Zbl

[3] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, Izd-vo MTsNMO, M., 2010

[4] Matiyasevich Yu. V., “Vychislenie obobschënnykh polinomov Chebyshëva na kompyutere”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1996, no. 6, 59–61 | MR | Zbl

[5] Beukers F., Stewart C. L., “Neighboring powers”, J. Number Theory, 130 (2010), 660–679 | DOI | MR | Zbl

[6] Birch B. J., Chowla S., Hall M. (Jr.), Schinzel A., “On the difference $x^3-y^2$”, Det Kongelige Norske Videnskabers Selskabs Forhandlinger (Trondheim), 38 (1965), 65–69 | MR | Zbl

[7] Butler G., McKay J., “The transitive groups of degree up to eleven”, Commun. Algebra, 11:8 (1983), 863–911 | DOI | MR | Zbl

[8] Cassou-Noguès P., Couveignes J.-M., “Factorisations explicites de $g(y)-h(z)$”, Acta Arith., 87:4 (1999), 291–317 | MR | Zbl

[9] Frohardt D., Magaard K., “Composition factors of monodromy groups”, Ann. Math., 154 (2001), 327–345 | DOI | MR | Zbl

[10] Guralnick R., Thompson J., “Finite groups of genus zero”, J. Algebra, 131:1 (1990), 303–341 | DOI | MR | Zbl

[11] Hulpke A., “Constructing transitive permutation groups”, J. Symb. Comp., 39:1 (2005), 1–30 | DOI | MR | Zbl

[12] Jones G. A., “Primitive permutation groups containing a cycle”, Bull. Austr. Math. Soc., 89 (2014), 159–165 ; arXiv: 1209.5169v1 | DOI | MR

[13] Jordan C., “Théorèmes sur les groupes primitifs”, J. Math. Pures Appl., 16 (1871), 383–408

[14] Magaard K., Shpectorov S., Wang G., Generating sets of affine groups of low genus, 2011, arXiv: 1108.4833v1 | MR

[15] Müller P., “Primitive monodromy groups of polynomials”, Recent Developments in the Inverse Galois Problem, Contemp. Math., 186, Amer. Math. Soc., 1995, 385–401 | DOI | MR | Zbl

[16] Pakovich F., Zvonkin A. K., “Minimum degree of the difference of two polynomials over $\mathbb Q$, and weighted plane trees”, Selecta Math. New Ser., 2014 (to appear) , 63 pp. ; arXiv: 1306.4141v1 | DOI

[17] Pakovich F., Zvonkin A. K., Minimum degree of the difference of two polynomials over $\mathbb Q$. Pt. II: Davenport–Zannier pairs, In preparation. A preliminary version available at http://www.labri.fr/perso/zvonkin/

[18] Wang G., Genus zero systems for primitive groups of affine type, Ph. D. Thesis, Univ. of Birmingham, 2011

[19] Zannier U., “On Davenport's bound for the degree of $f^3-g^2$ and Riemann's existence theorem”, Acta Arith., 71:2 (1995), 107–137 | MR | Zbl