Best recovery of the Laplace operator of a~function and sharp inequalities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 175-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the problem of optimal recovery of fractional powers of the Laplace operator in the uniform norm on the multivariate generalized Sobolev class of functions from incomplete data about the Fourier transform of these functions on the ball of radius $r$ centered at the origin. An optimal recovery method is constructed, and a number $\hat r>0$ is specified such that for $r\le\hat r$ the method makes use of all the information about the Fourier transform, smoothing thereof; and if $r>\hat r$, then the information on the Fourier transform proves superfluous and hence is not used by the optimal method. For fractional powers of the Laplace operator, a sharp inequality is proved. This inequality turns out to be closely related to the recovery problem and is an analogue of Kolmogorov-type inequalities for derivatives.
@article{FPM_2013_18_5_a9,
     author = {E. O. Sivkova},
     title = {Best recovery of the {Laplace} operator of a~function and sharp inequalities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--185},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a9/}
}
TY  - JOUR
AU  - E. O. Sivkova
TI  - Best recovery of the Laplace operator of a~function and sharp inequalities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 175
EP  - 185
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a9/
LA  - ru
ID  - FPM_2013_18_5_a9
ER  - 
%0 Journal Article
%A E. O. Sivkova
%T Best recovery of the Laplace operator of a~function and sharp inequalities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 175-185
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a9/
%G ru
%F FPM_2013_18_5_a9
E. O. Sivkova. Best recovery of the Laplace operator of a~function and sharp inequalities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 175-185. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a9/

[1] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie znachenii funktsii i ikh proizvodnykh po netochno zadannomu preobrazovaniyu Fure”, Mat. sb., 195:10 (2004), 67–82 | DOI | MR | Zbl

[2] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po eë netochno zadannomu spektru”, Mat. sb., 203:4 (2012), 119–130 | DOI | MR | Zbl

[3] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Mat. sb., 188:12 (1997), 73–106 | DOI | MR | Zbl

[4] Sivkova E. O., “Ob optimalnom vosstanovlenii laplasiana funktsii po eë netochno zadannomu preobrazovaniyu Fure”, Vladikavkaz. mat. zhurn., 14:4 (2012), 63–72 | MR

[5] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl