Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 145-153
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for $p>1$ and $0\alpha$ there exists a function from the Bessel potentials class $J_\alpha(L^p(\mathbb R^n))$ such that the Hausdorff dimension of its exceptional Lebesgue set is $n-\alpha p$. We also show that such a function may be taken from the Besov class $B^\alpha_{p,q}(\mathbb R^n)$ with any $q>0$.
@article{FPM_2013_18_5_a7,
author = {V. G. Krotov and M. A. Prokhorovich},
title = {Functions from {Sobolev} and {Besov} spaces with maximal {Hausdorff} dimension of the exceptional {Lebesgue} set},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {145--153},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/}
}
TY - JOUR AU - V. G. Krotov AU - M. A. Prokhorovich TI - Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 145 EP - 153 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/ LA - ru ID - FPM_2013_18_5_a7 ER -
%0 Journal Article %A V. G. Krotov %A M. A. Prokhorovich %T Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 145-153 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/ %G ru %F FPM_2013_18_5_a7
V. G. Krotov; M. A. Prokhorovich. Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 145-153. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/