Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 145-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for $p>1$ and $0\alpha$ there exists a function from the Bessel potentials class $J_\alpha(L^p(\mathbb R^n))$ such that the Hausdorff dimension of its exceptional Lebesgue set is $n-\alpha p$. We also show that such a function may be taken from the Besov class $B^\alpha_{p,q}(\mathbb R^n)$ with any $q>0$.
@article{FPM_2013_18_5_a7,
     author = {V. G. Krotov and M. A. Prokhorovich},
     title = {Functions from {Sobolev} and {Besov} spaces with maximal {Hausdorff} dimension of the exceptional {Lebesgue} set},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--153},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/}
}
TY  - JOUR
AU  - V. G. Krotov
AU  - M. A. Prokhorovich
TI  - Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 145
EP  - 153
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/
LA  - ru
ID  - FPM_2013_18_5_a7
ER  - 
%0 Journal Article
%A V. G. Krotov
%A M. A. Prokhorovich
%T Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 145-153
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/
%G ru
%F FPM_2013_18_5_a7
V. G. Krotov; M. A. Prokhorovich. Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 145-153. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a7/

[1] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[3] Adams D. R., Hedberg L. I., Function spaces and potential theory, Springer, Berlin, 1996 | MR | Zbl

[4] Bagby T., Ziemer C., “Pointwise differentiability and absolute continuity”, Trans. Am. Math. Soc., 191 (1974), 129–148 | DOI | MR | Zbl

[5] Calderón A. P., “Lebesgue spaces of differentiable functions and distributions”, Proc. Symp. Pure Math., 4, Amer. Math. Soc., Providence, 1961, 33–49 | DOI | MR

[6] Calderon C. P., Fabes E. B., Riviere N. M., “Maximal smoothing operators”, Indiana Univ. Math. J., 232:10 (1974), 889–898 | DOI | MR

[7] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990 | MR | Zbl

[8] Federer H., Ziemer C., “The Lebesgue sets of a function whose distribution derivatives are $p$th power summable”, Indiana Univ. Math. J., 22:2 (1972), 139–158 | DOI | MR | Zbl

[9] Krotov V. G., “Maximal functions measuring smoothness”, Recent Advances in Harmonic Analysis and Applications in Honor of Konstantin Oskolkov, Springer Proc. Math. Stat., 25, Springer, Berlin, 2013, 197–223 | DOI | MR | Zbl

[10] Krotov V. G., Prokhorovich M. A., “Estimates for the exceptional Lebesgue sets of functions from Sobolev classes”, Recent Advances in Harmonic Analysis and Applications in Honor of Konstantin Oskolkov, Springer Proc. Math. Stat., 25, Springer, Berlin, 2013, 225–234 | DOI | MR | Zbl

[11] Meyers N. G., “Taylor expansion of Bessel potentials”, Indiana Univ. Math. J., 23:11 (1974), 1043–1049 | DOI | MR | Zbl

[12] Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[13] Triebel H., Theory of Function Spaces, v. II, Birkhäuser, Basel, 1992 | MR | Zbl