On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 27-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every real number $\gamma\ge1$ we denote by $K^\downarrow(\gamma)$ the least possible value of the constant term of an even nonnegative trigonometric polynomial with monotone coefficients such that all its coefficients, save for the constant term, are not less than $1$ and the sum of these coefficients equals $\gamma$. In this paper, the asymptotic estimate of $K^\downarrow(\gamma)$ is found and some extremal problems on the minimum of the constant term of an even nonnegative trigonometric polynomial are studied.
@article{FPM_2013_18_5_a2,
     author = {A. S. Belov},
     title = {On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {27--67},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a2/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 27
EP  - 67
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a2/
LA  - ru
ID  - FPM_2013_18_5_a2
ER  - 
%0 Journal Article
%A A. S. Belov
%T On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 27-67
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a2/
%G ru
%F FPM_2013_18_5_a2
A. S. Belov. On the asymptotic solution of one extremal problem related to nonnegative trigonometric polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 5, pp. 27-67. http://geodesic.mathdoc.fr/item/FPM_2013_18_5_a2/

[1] Belov A. S., “Ob odnoi ekstremalnoi zadache o minimume trigonometricheskogo polinoma”, Izv. RAN. Ser. mat., 57:6 (1993), 212–226 | MR | Zbl

[2] Belov A. S., Trigonometricheskie ryady i polinomy s neotritsatelnymi chastnymi summami, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 2003

[3] Belov A. S., “Ob ekstremalnykh zadachakh na mnozhestve neotritsatelnykh trigonometricheskikh polinomov”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 12-i Saratovskoi zimnei shkoly (27 yanvarya 3 fevralya 2004 g.), Izd-vo GosUNTs “Kolledzh”, Saratov, 2004, 19–21

[4] Belov A. S., “Ob odnoi posledovatelnosti neotritsatelnykh trigonometricheskikh polinomov”, Vestn. Ivanov. gos. un-ta. Ser. Biologiya. Khimiya. Fizika. Matematika, 2011, no. 2, 104–114

[5] Belov A. S., “Ob ekstremalnoi zadache o minimume svobodnogo chlena neotritsatelnogo trigonometricheskogo polinoma”, Tr. In-ta mat. i mekh. UrO RAN., 17, no. 3, 2011, 105–121

[6] Belov A. S., “O lokalizatsii nulei nekotorykh trigonometricheskikh polinomov”, Vestn. Ivanov. gos. un-ta. Ser. Biologiya. Khimiya. Fizika. Matematika, 2012, no. 2, 92–106

[7] Belov A. S., “O polozhitelno opredelënnykh lomanykh funktsiyakh i ikh primeneniyakh”, Tr. MIRAN im. V. A. Steklova, 280, 2013, 11–40 | DOI | Zbl

[8] Konyagin S. V., “O probleme Littlvuda”, Izv. AN SSSR. Ser. mat., 45:2 (1981), 243–265 | MR | Zbl

[9] McGehee O. C., Pigno L., Smith B., “Hardy's inequality and the $L^1$-norm of exponential sums”, Ann. Math. Ser. 2, 113:3 (1981), 613–618 | DOI | MR | Zbl

[10] Odlyzko A. M., “Minima of cosine sums and maxima of polynomials on the unit circle”, J. London Math. Soc., 26:3 (1982), 412–420 | DOI | MR | Zbl