Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_4_a6, author = {V. O. Manturov and D. A. Fedoseev}, title = {Invariants of homotopy classes of curves and graphs on $2$-surfaces}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {89--105}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a6/} }
TY - JOUR AU - V. O. Manturov AU - D. A. Fedoseev TI - Invariants of homotopy classes of curves and graphs on $2$-surfaces JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 89 EP - 105 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a6/ LA - ru ID - FPM_2013_18_4_a6 ER -
V. O. Manturov; D. A. Fedoseev. Invariants of homotopy classes of curves and graphs on $2$-surfaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 89-105. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a6/
[1] Ilyutko D. P., Manturov V. O., Nikonov I. M., “Chëtnost v teorii uzlov i graf-zatsepleniya”, SMFN, 41, 2011, 3–163 | MR
[2] Manturov V. O., “Kompleks Khovanova dlya virtualnykh uzlov”, Fundament. i prikl. mat., 11:4 (2005), 127–152 | MR | Zbl
[3] Fomenko A. T., “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Amer. Math. Soc., 6 (1991), 1–35 | MR | Zbl
[4] Goldman W., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85 (1986), 263–302 | DOI | MR | Zbl
[5] Hass J., Scott P., “Shortening curves on surfaces”, Topology, 33:1 (1994), 25–43 | DOI | MR | Zbl
[6] Reinhart B. L., “Algorithms for Jordan curves on compact surfaces”, Ann. Math., 75:2 (1962), 209–222 | DOI | MR | Zbl
[7] Turaev V. G., “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Sup., 24 (1991), 635–704 | MR | Zbl