On tame and wild automorphisms of algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 79-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_n$ be a polynomial algebra of $n$ variables over a field $F$. Considering a free associative algebra $A_n$ of rank $n$ over $F$ as a polynomial algebra of noncommuting variables, we choose the ideal $R$ of all polynomials with a zero absolute term in $B_n$ and $A_n$. The well-known concept of wild automorphisms of the algebras $A_n$ and $B_n$ is transferred to $R$; the study of wild automorphisms is reduced to monic automorphisms of the algebra $R$, i.e., those identical on each factor $R^k/R^{k+1}$. In particular, this enables us to study the properties of the known Nagata and Anik automorphisms in detail. For $n=3$ we investigate the hypothesis that the Anik automorphism is tame modulo $R^k$ for every given integer $k>1$.
@article{FPM_2013_18_4_a5,
     author = {C. K. Gupta and V. M. Levchuk and Yu. Yu. Ushakov},
     title = {On tame and wild automorphisms of algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a5/}
}
TY  - JOUR
AU  - C. K. Gupta
AU  - V. M. Levchuk
AU  - Yu. Yu. Ushakov
TI  - On tame and wild automorphisms of algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 79
EP  - 88
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a5/
LA  - ru
ID  - FPM_2013_18_4_a5
ER  - 
%0 Journal Article
%A C. K. Gupta
%A V. M. Levchuk
%A Yu. Yu. Ushakov
%T On tame and wild automorphisms of algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 79-88
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a5/
%G ru
%F FPM_2013_18_4_a5
C. K. Gupta; V. M. Levchuk; Yu. Yu. Ushakov. On tame and wild automorphisms of algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 79-88. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a5/