Algebraic geometry over Boolean algebras in the language with constants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 197-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study equations over Boolean algebras with distinguished elements. We prove criteria for when a Boolean algebra is equationally Noetherian, weakly equationally Noetherian, $\mathbf q_\omega$-compact, or $\mathbf u_\omega$-compact. Also we solve the problem of geometric equivalence in the class of Boolean algebras with distinguished elements.
@article{FPM_2013_18_4_a13,
     author = {A. N. Shevlyakov},
     title = {Algebraic geometry over {Boolean} algebras in the language with constants},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {197--218},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Algebraic geometry over Boolean algebras in the language with constants
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 197
EP  - 218
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/
LA  - ru
ID  - FPM_2013_18_4_a13
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Algebraic geometry over Boolean algebras in the language with constants
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 197-218
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/
%G ru
%F FPM_2013_18_4_a13
A. N. Shevlyakov. Algebraic geometry over Boolean algebras in the language with constants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 197-218. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/

[1] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundament. i prikl. mat., 17:1 (2011/2012), 65–106 | MR

[2] Daniyarova E., Miasnikov A., Remeslennikov V., “Unification theorems in algebraic geometry”, Aspects of Infinite Groups, Algebra Discrete Math., 1, 2008, 80–111 | DOI | MR | Zbl

[3] Daniyarova E., Miasnikov A., Remeslennikov V., “Algebraic geometry over algebraic structures. III. Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35 (2011), 35–68 | MR | Zbl

[4] Kotov M., “Equationally Noetherian property and close properties”, Southeast Asian Bull. Math., 35 (2011), 419–429 | MR | Zbl

[5] Monk D., Handbook of Boolean Algebras, Elsevier, 1989

[6] Miasnikov A., Remeslennikov V., “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR

[7] Plotkin B., “Algebras with the same (algebraic) geometry”, Proc. Steklov Inst. Math., 242, 2003, 165–196 | MR | Zbl

[8] Shevlyakov A., “Algebraic geometry over linear ordered semilattices”, Algebra and Model Theory, 8, eds. A. G. Pinus et al., NSTU, Novosibirsk, 2011, 116–131

[9] Shevlyakov A., “Commutative idempotent semigroups at the service of universal algebraic geometry”, Southeast Asian Bull. Math., 35 (2011), 111–136 | MR | Zbl