Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_4_a13, author = {A. N. Shevlyakov}, title = {Algebraic geometry over {Boolean} algebras in the language with constants}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {197--218}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/} }
TY - JOUR AU - A. N. Shevlyakov TI - Algebraic geometry over Boolean algebras in the language with constants JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 197 EP - 218 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/ LA - ru ID - FPM_2013_18_4_a13 ER -
A. N. Shevlyakov. Algebraic geometry over Boolean algebras in the language with constants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 197-218. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a13/
[1] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundament. i prikl. mat., 17:1 (2011/2012), 65–106 | MR
[2] Daniyarova E., Miasnikov A., Remeslennikov V., “Unification theorems in algebraic geometry”, Aspects of Infinite Groups, Algebra Discrete Math., 1, 2008, 80–111 | DOI | MR | Zbl
[3] Daniyarova E., Miasnikov A., Remeslennikov V., “Algebraic geometry over algebraic structures. III. Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35 (2011), 35–68 | MR | Zbl
[4] Kotov M., “Equationally Noetherian property and close properties”, Southeast Asian Bull. Math., 35 (2011), 419–429 | MR | Zbl
[5] Monk D., Handbook of Boolean Algebras, Elsevier, 1989
[6] Miasnikov A., Remeslennikov V., “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR
[7] Plotkin B., “Algebras with the same (algebraic) geometry”, Proc. Steklov Inst. Math., 242, 2003, 165–196 | MR | Zbl
[8] Shevlyakov A., “Algebraic geometry over linear ordered semilattices”, Algebra and Model Theory, 8, eds. A. G. Pinus et al., NSTU, Novosibirsk, 2011, 116–131
[9] Shevlyakov A., “Commutative idempotent semigroups at the service of universal algebraic geometry”, Southeast Asian Bull. Math., 35 (2011), 111–136 | MR | Zbl