Pairing inversion for finding discrete logarithms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 185-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes an inversion algorithm for pairings. This technique can be used for breaking the Diffie–Hellman protocol on elliptic curves and for solving the discrete logarithm problem on some curves that satisfy GOST P.34.10-2012.
@article{FPM_2013_18_4_a12,
     author = {M. A. Cherepniov},
     title = {Pairing inversion for finding discrete logarithms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--195},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a12/}
}
TY  - JOUR
AU  - M. A. Cherepniov
TI  - Pairing inversion for finding discrete logarithms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 185
EP  - 195
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a12/
LA  - ru
ID  - FPM_2013_18_4_a12
ER  - 
%0 Journal Article
%A M. A. Cherepniov
%T Pairing inversion for finding discrete logarithms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 185-195
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a12/
%G ru
%F FPM_2013_18_4_a12
M. A. Cherepniov. Pairing inversion for finding discrete logarithms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 185-195. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a12/

[1] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[2] Bardet M., Faugère J. C., Salvy B., Complexity of Gröbner basis computation for semi-regular overdetermined sequences over $\mathbb F_2$ with solutions in $\mathbb F_2$, Rapport de Recherche No. 5049, INRIA, Decembre 2003

[3] Canfield E. R., Erdős P., Pomerance C., “On a problem of Oppenheim concerning ‘Factorisatio Numerorum’ ”, J. Number Theory, 17 (1983), 1–28 | DOI | MR | Zbl

[4] Cherepnev M. A., “On the connection between discrete logarithms and the Diffie–Hellman problem”, Discrete Math., 8:3 (1996), 22–30 | MR

[5] Cohen H., Frey G., et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall, London, 2006 | MR | Zbl

[6] Davenport J. H., On the Integration of Algebraic Functions, Lect. Notes Comput. Sci., 102, Springer, Berlin, 1979 | MR

[7] Ford K., Konyagin S. V., Luca F., “Prime chains and Pratt trees”, Geom. Funct. Anal., 20 (2010), 1231–1258 | DOI | MR | Zbl

[8] Faugère J. C., Din M. S., Verron T., “On the complexity of computing Gröbner basis for quasi-homogeneous systems”, ISSAC' 13 (June 26–29, 2013, Boston, Massachusetts, USA)

[9] Galbraith S., Hess F., Vercauteren F., “Aspects of pairing invertion”, IEEE Trans., 54:12 (2008), 5719–5728 | MR | Zbl

[10] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series, and Products, Academic Press, San Diego, 2000, 1111–1112 | MR

[11] Hess F., “A note on the Tate pairing of curves over finite fields”, Arch. Math. (Basel), 82 (2004), 28–32 | DOI | MR | Zbl

[12] Hess F., “Pairing Lattices”, Pairing Based Cryptography – Pairing 2008, Lect. Notes Comput. Sci., 5209, eds. S. D. Galbraith, K. G. Paterson, Springer, Berlin, 2008, 18–38 | DOI | MR | Zbl

[13] Miller V. S., Short Programs for Functions on Curves, Unpublished manuscript, , 1986 http://crypto.stanford.edu/miller/

[14] Pratt V., “Every prime has a succinct certificate”, SIAM J. Comput., 4:3 (1975), 214–220 | DOI | MR | Zbl

[15] Selivanov B. I., “On waiting time in the scheme random allocation of coloured particles”, Discrete Math. Appl., 5:1 (1995), 73–82 | DOI | MR | Zbl

[16] Silverman J., The Arithmetic of Elliptic Curves, Springer, Berlin, 1986 | MR | Zbl

[17] Vasilenko O. N., Number-Theoretic Algorithms in Cryptography, 2006 | MR

[18] Vercauteren F., “The hidden root problem”, Pairing Based Cryptography – Pairing 2008, Lect. Notes Comput. Sci., 5209, eds. S. D. Galbraith, K. G. Paterson, Springer, Heidelberg, 2008, 89–99 ; https://eprint.iacr.org/2008/261.pdf | DOI | MR | Zbl

[19] Vercauteren F., “Optimal Pairings”, IEEE Trans. Inform. Theory, 56:1 (2010), 455–461 ; https://eprint.iacr.org/2008/096.pdf | DOI | MR

[20] Zhao C.-A., Zhang F., Huang J., A note on the Ate pairing cryptology, https://eprint.iacr.org/2007/247.pdf