Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_4_a12, author = {M. A. Cherepniov}, title = {Pairing inversion for finding discrete logarithms}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {185--195}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a12/} }
M. A. Cherepniov. Pairing inversion for finding discrete logarithms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 185-195. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a12/
[1] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR
[2] Bardet M., Faugère J. C., Salvy B., Complexity of Gröbner basis computation for semi-regular overdetermined sequences over $\mathbb F_2$ with solutions in $\mathbb F_2$, Rapport de Recherche No. 5049, INRIA, Decembre 2003
[3] Canfield E. R., Erdős P., Pomerance C., “On a problem of Oppenheim concerning ‘Factorisatio Numerorum’ ”, J. Number Theory, 17 (1983), 1–28 | DOI | MR | Zbl
[4] Cherepnev M. A., “On the connection between discrete logarithms and the Diffie–Hellman problem”, Discrete Math., 8:3 (1996), 22–30 | MR
[5] Cohen H., Frey G., et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall, London, 2006 | MR | Zbl
[6] Davenport J. H., On the Integration of Algebraic Functions, Lect. Notes Comput. Sci., 102, Springer, Berlin, 1979 | MR
[7] Ford K., Konyagin S. V., Luca F., “Prime chains and Pratt trees”, Geom. Funct. Anal., 20 (2010), 1231–1258 | DOI | MR | Zbl
[8] Faugère J. C., Din M. S., Verron T., “On the complexity of computing Gröbner basis for quasi-homogeneous systems”, ISSAC' 13 (June 26–29, 2013, Boston, Massachusetts, USA)
[9] Galbraith S., Hess F., Vercauteren F., “Aspects of pairing invertion”, IEEE Trans., 54:12 (2008), 5719–5728 | MR | Zbl
[10] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series, and Products, Academic Press, San Diego, 2000, 1111–1112 | MR
[11] Hess F., “A note on the Tate pairing of curves over finite fields”, Arch. Math. (Basel), 82 (2004), 28–32 | DOI | MR | Zbl
[12] Hess F., “Pairing Lattices”, Pairing Based Cryptography – Pairing 2008, Lect. Notes Comput. Sci., 5209, eds. S. D. Galbraith, K. G. Paterson, Springer, Berlin, 2008, 18–38 | DOI | MR | Zbl
[13] Miller V. S., Short Programs for Functions on Curves, Unpublished manuscript, , 1986 http://crypto.stanford.edu/miller/
[14] Pratt V., “Every prime has a succinct certificate”, SIAM J. Comput., 4:3 (1975), 214–220 | DOI | MR | Zbl
[15] Selivanov B. I., “On waiting time in the scheme random allocation of coloured particles”, Discrete Math. Appl., 5:1 (1995), 73–82 | DOI | MR | Zbl
[16] Silverman J., The Arithmetic of Elliptic Curves, Springer, Berlin, 1986 | MR | Zbl
[17] Vasilenko O. N., Number-Theoretic Algorithms in Cryptography, 2006 | MR
[18] Vercauteren F., “The hidden root problem”, Pairing Based Cryptography – Pairing 2008, Lect. Notes Comput. Sci., 5209, eds. S. D. Galbraith, K. G. Paterson, Springer, Heidelberg, 2008, 89–99 ; https://eprint.iacr.org/2008/261.pdf | DOI | MR | Zbl
[19] Vercauteren F., “Optimal Pairings”, IEEE Trans. Inform. Theory, 56:1 (2010), 455–461 ; https://eprint.iacr.org/2008/096.pdf | DOI | MR
[20] Zhao C.-A., Zhang F., Huang J., A note on the Ate pairing cryptology, https://eprint.iacr.org/2007/247.pdf