@article{FPM_2013_18_4_a10,
author = {I. N. Tumaykin},
title = {Basic {Reed{\textendash}Muller} codes as group codes},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {137--154},
year = {2013},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a10/}
}
I. N. Tumaykin. Basic Reed–Muller codes as group codes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 4, pp. 137-154. http://geodesic.mathdoc.fr/item/FPM_2013_18_4_a10/
[1] Assmus E. F. (Jr.), Key J. D., “Polynomial codes and finite geometries”, Handbook of Coding Theory, v. 2, Elsevier, Amsterdam, 1998, 1269–1343 | MR | Zbl
[2] Berman S. D., “On the theory of group codes”, Kibernetika, 3, 1967, 31–39 | MR
[3] Couselo E., Gonzalez S., Markov V., Martinez C., Nechaev A., “Ideal representation of Reed–Solomon and Reed–Muller codes”, Algebra Logic, 51:3 (2012), 195–212 | DOI | MR | Zbl
[4] Jennings S. A., “The structure of the group ring of a $p$-group over a modular field”, Trans. Am. Math. Soc., 50 (1941), 175–185 | MR | Zbl
[5] Landrock P., Manz O., “Classical codes as ideals in group algebras”, Designs, Codes Cryptography, 2:3 (1992), 273–285 | DOI | MR | Zbl