Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_3_a9, author = {M. N. Nazarov}, title = {A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {149--160}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/} }
TY - JOUR AU - M. N. Nazarov TI - A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 149 EP - 160 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/ LA - ru ID - FPM_2013_18_3_a9 ER -
%0 Journal Article %A M. N. Nazarov %T A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 149-160 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/ %G ru %F FPM_2013_18_3_a9
M. N. Nazarov. A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 149-160. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/
[1] Artamonov V. A., “Universalnye algebry”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 27, 1989, 45–124 | MR | Zbl
[2] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl
[3] Graev M. I., Koganov A. V., Geometricheskie i topologicheskie struktury na gruppoidakh, M., 2002
[4] Ivanov A. A., “Polnye teorii unarov”, Algebra i logika, 23:1 (1984), 48–73 | MR | Zbl
[5] Nazarov M. N., “Sosredotochennaya model razvitiya kletochnogo soobschestva s emulyatsiei signalnogo obmena”, Vestn. MGADA, ser. filosof., sotsial. i estestv. nauk, 2011, no. 5, 150–157
[6] Rasstrigin A. L., “Formatsii konechnykh unarov”, Chebyshëvskii sb., 12:2 (2011), 102–109 | MR | Zbl
[7] Harrison M. A., “The number of isomorphism types of finite algebras”, Proc. Am. Math. Soc., 17 (1966), 731–737 | DOI | MR | Zbl