A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 149-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The application of finite groupoids to the modeling of the interaction of living cells in biology is considered. For this application, special numerical characteristics for groupoid elements based on the general form of the Cayley table of groupoids were established. In particular, a self-induced metric on groupoids was constructed to analyze and describe small variations in the Cayley tables of groupoids.
@article{FPM_2013_18_3_a9,
     author = {M. N. Nazarov},
     title = {A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--160},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/}
}
TY  - JOUR
AU  - M. N. Nazarov
TI  - A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 149
EP  - 160
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/
LA  - ru
ID  - FPM_2013_18_3_a9
ER  - 
%0 Journal Article
%A M. N. Nazarov
%T A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 149-160
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/
%G ru
%F FPM_2013_18_3_a9
M. N. Nazarov. A self-induced metric on groupoids and its application to the analysis of cellular interactions in biology. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 149-160. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a9/

[1] Artamonov V. A., “Universalnye algebry”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 27, 1989, 45–124 | MR | Zbl

[2] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl

[3] Graev M. I., Koganov A. V., Geometricheskie i topologicheskie struktury na gruppoidakh, M., 2002

[4] Ivanov A. A., “Polnye teorii unarov”, Algebra i logika, 23:1 (1984), 48–73 | MR | Zbl

[5] Nazarov M. N., “Sosredotochennaya model razvitiya kletochnogo soobschestva s emulyatsiei signalnogo obmena”, Vestn. MGADA, ser. filosof., sotsial. i estestv. nauk, 2011, no. 5, 150–157

[6] Rasstrigin A. L., “Formatsii konechnykh unarov”, Chebyshëvskii sb., 12:2 (2011), 102–109 | MR | Zbl

[7] Harrison M. A., “The number of isomorphism types of finite algebras”, Proc. Am. Math. Soc., 17 (1966), 731–737 | DOI | MR | Zbl