Concrete characterization of universal planar automata
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 139-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Universal planar automata are universally attracted objects in the category of automata, for which the sets of states and output symbols are endowed with structures of planes. It was proved that these automata are determined up to isomorphism by their semigroups of input symbols. We investigate the problem of concrete characterization of these automata.
@article{FPM_2013_18_3_a8,
     author = {V. A. Molchanov},
     title = {Concrete characterization of universal planar automata},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a8/}
}
TY  - JOUR
AU  - V. A. Molchanov
TI  - Concrete characterization of universal planar automata
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 139
EP  - 148
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a8/
LA  - ru
ID  - FPM_2013_18_3_a8
ER  - 
%0 Journal Article
%A V. A. Molchanov
%T Concrete characterization of universal planar automata
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 139-148
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a8/
%G ru
%F FPM_2013_18_3_a8
V. A. Molchanov. Concrete characterization of universal planar automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 139-148. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a8/

[1] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR

[2] Lender V. B., “Ob endomorfizmakh proektivnykh geometrii”, Issledovaniya algebraicheskikh sistem, Mat. zapiski Ural. un-ta, no. 4, Ural. gos. un-t, Sverdlovsk, 1984, 48–50 | MR

[3] Molchanov V. A., “Kak proektivnye ploskosti opredelyayutsya svoimi polugruppami”, Teoriya polugrupp i eë prilozheniya. Polugruppy i svyazannye s nimi algebraicheskie sistemy, Saratov. gos. un-t, Saratov, 1984, 42–50 | MR

[4] Plotkin B. I., Gringlaz L. Ya., Gvaramiya A. A., Elementy algebraicheskoi teorii avtomatov, Vysshaya shkola, M., 1994

[5] Sverdlovskaya tetrad: Sbornik nereshënnykh problem teorii polugrupp, Ural. gos. un-t, Sverdlovsk, 1979

[6] Ulam S., Nereshënnye matematicheskie zadachi, Nauka, M., 1964 | Zbl

[7] Khartskhorn R., Osnovy proektivnoi geometrii, Mir, M., 1970

[8] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, v. I, Amer. Math. Soc., Providence, 1964

[9] Jónsson B., Topics in Universal Algebra, Lect. Notes, Vanderbilt Univ., 1969–1970

[10] Molchanov V. A., “Semigroups of mappings on graphs”, Semigroup Forum, 27 (1983), 155–199 | DOI | MR | Zbl

[11] Molchanov V. A., “A universal planar automaton is determined by its semigroup of input symbols”, Semigroup Forum, 82 (2011), 1–9 | DOI | MR | Zbl