Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_3_a8, author = {V. A. Molchanov}, title = {Concrete characterization of universal planar automata}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {139--148}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a8/} }
V. A. Molchanov. Concrete characterization of universal planar automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 139-148. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a8/
[1] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR
[2] Lender V. B., “Ob endomorfizmakh proektivnykh geometrii”, Issledovaniya algebraicheskikh sistem, Mat. zapiski Ural. un-ta, no. 4, Ural. gos. un-t, Sverdlovsk, 1984, 48–50 | MR
[3] Molchanov V. A., “Kak proektivnye ploskosti opredelyayutsya svoimi polugruppami”, Teoriya polugrupp i eë prilozheniya. Polugruppy i svyazannye s nimi algebraicheskie sistemy, Saratov. gos. un-t, Saratov, 1984, 42–50 | MR
[4] Plotkin B. I., Gringlaz L. Ya., Gvaramiya A. A., Elementy algebraicheskoi teorii avtomatov, Vysshaya shkola, M., 1994
[5] Sverdlovskaya tetrad: Sbornik nereshënnykh problem teorii polugrupp, Ural. gos. un-t, Sverdlovsk, 1979
[6] Ulam S., Nereshënnye matematicheskie zadachi, Nauka, M., 1964 | Zbl
[7] Khartskhorn R., Osnovy proektivnoi geometrii, Mir, M., 1970
[8] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, v. I, Amer. Math. Soc., Providence, 1964
[9] Jónsson B., Topics in Universal Algebra, Lect. Notes, Vanderbilt Univ., 1969–1970
[10] Molchanov V. A., “Semigroups of mappings on graphs”, Semigroup Forum, 27 (1983), 155–199 | DOI | MR | Zbl
[11] Molchanov V. A., “A universal planar automaton is determined by its semigroup of input symbols”, Semigroup Forum, 82 (2011), 1–9 | DOI | MR | Zbl