A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 117-137
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we study the structure of finite groups in which the centralizer of an element of order $3$ is isomorphic to $\mathbb Z_3\times\mathbb Z_2\times\mathbb Z_2$. The analysis is restricted to the class of groups whose order is not divisible by the prime number $5$. It is shown that among finite simple groups such groups do not exist, and a detailed possible internal general structure of such groups is investigated. We use only those results that have been published before 1980.
@article{FPM_2013_18_3_a7,
author = {V. I. Loginov},
title = {A class of finite groups with {Abelian} centralizer of an element of order~$3$ of type $(3,2,2)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {117--137},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/}
}
TY - JOUR AU - V. I. Loginov TI - A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 117 EP - 137 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/ LA - ru ID - FPM_2013_18_3_a7 ER -
V. I. Loginov. A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 117-137. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/