A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 117-137

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the structure of finite groups in which the centralizer of an element of order $3$ is isomorphic to $\mathbb Z_3\times\mathbb Z_2\times\mathbb Z_2$. The analysis is restricted to the class of groups whose order is not divisible by the prime number $5$. It is shown that among finite simple groups such groups do not exist, and a detailed possible internal general structure of such groups is investigated. We use only those results that have been published before 1980.
@article{FPM_2013_18_3_a7,
     author = {V. I. Loginov},
     title = {A class of finite groups with {Abelian} centralizer of an element of order~$3$ of type $(3,2,2)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--137},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/}
}
TY  - JOUR
AU  - V. I. Loginov
TI  - A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 117
EP  - 137
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/
LA  - ru
ID  - FPM_2013_18_3_a7
ER  - 
%0 Journal Article
%A V. I. Loginov
%T A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 117-137
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/
%G ru
%F FPM_2013_18_3_a7
V. I. Loginov. A class of finite groups with Abelian centralizer of an element of order~$3$ of type $(3,2,2)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 117-137. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a7/