Colorings of partial Steiner systems and their applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 77-115

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with extremal problems concerning colorings of partial Steiner systems. We establish a new sufficient condition for $r$-colorability of a hypergraph from some class of such systems in terms of maximum vertex degree. Moreover, as a corollary we obtain a new lower bound for the threshold probability for $r$-colorability of a random hypergraph in a binomial model.
@article{FPM_2013_18_3_a6,
     author = {A. B. Kupavskii and D. A. Shabanov},
     title = {Colorings of partial {Steiner} systems and their applications},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--115},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - D. A. Shabanov
TI  - Colorings of partial Steiner systems and their applications
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 77
EP  - 115
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/
LA  - ru
ID  - FPM_2013_18_3_a6
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A D. A. Shabanov
%T Colorings of partial Steiner systems and their applications
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 77-115
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/
%G ru
%F FPM_2013_18_3_a6
A. B. Kupavskii; D. A. Shabanov. Colorings of partial Steiner systems and their applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 77-115. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/