Colorings of partial Steiner systems and their applications
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 77-115
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with extremal problems concerning colorings of partial Steiner systems. We establish a new sufficient condition for $r$-colorability of a hypergraph from some class of such systems in terms of maximum vertex degree. Moreover, as a corollary we obtain a new lower bound for the threshold probability for $r$-colorability of a random hypergraph in a binomial model.
@article{FPM_2013_18_3_a6,
author = {A. B. Kupavskii and D. A. Shabanov},
title = {Colorings of partial {Steiner} systems and their applications},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {77--115},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/}
}
TY - JOUR AU - A. B. Kupavskii AU - D. A. Shabanov TI - Colorings of partial Steiner systems and their applications JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 77 EP - 115 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/ LA - ru ID - FPM_2013_18_3_a6 ER -
A. B. Kupavskii; D. A. Shabanov. Colorings of partial Steiner systems and their applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 77-115. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a6/