Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_3_a5, author = {E. A. da Costa and A. N. Krasilnikov}, title = {Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {69--76}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/} }
TY - JOUR AU - E. A. da Costa AU - A. N. Krasilnikov TI - Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 69 EP - 76 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/ LA - ru ID - FPM_2013_18_3_a5 ER -
%0 Journal Article %A E. A. da Costa %A A. N. Krasilnikov %T Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 69-76 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/ %G ru %F FPM_2013_18_3_a5
E. A. da Costa; A. N. Krasilnikov. Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 69-76. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/
[1] Deryabina G. S., Krasilnikov A. N., “O razreshimykh gruppakh eksponenty 4”, Sib. mat. zhurn., 44:1 (2003), 69–72 | MR | Zbl
[2] Krasilnikov A. N., “O tozhdestvakh trianguliruemykh matrichnykh predstavlenii grupp”, Tr. MMO, 52, 1989, 229–245 | MR | Zbl
[3] Krasilnikov A. N., “O konechnosti bazisa tozhdestv grupp s nilpotentnym kommutantom”, Izv. AN SSSR. Ser. mat., 54:6 (1990), 1181–1195 | MR | Zbl
[4] Krasilnikov A. N., “O tozhdestvakh algebr Li s nilpotentnym kommutantom nad polem konechnoi kharakteristiki”, Mat. zametki, 51:3 (1992), 47–52 | MR | Zbl
[5] Aschenbrenner M., Hillar C. J., “Finite generation of symmetric ideals”, Trans. Am. Math. Soc., 359 (2007), 5171–5192 | DOI | MR | Zbl
[6] Brouwer A. E., Draisma J., “Equivariant Gröbner bases and the Gaussian two-factor model”, Math. Comp., 80 (2011), 1123–1133 | DOI | MR | Zbl
[7] Cohen D. E., “On the laws of a metabelian variety”, J. Algebra, 5 (1967), 267–273 | DOI | MR | Zbl
[8] Cohen D. E., “Closure relations, Buchberger's algorithm, and polynomials in infinitely many variables”, Computation Theory and Logic, Lect. Notes Comput. Sci., 270, Springer, Berlin, 1987, 78–87 | DOI | MR
[9] Draisma J., “Finiteness for the $k$-factor model and chirality varieties”, Adv. Math., 223 (2010), 243–256 | DOI | MR | Zbl
[10] Draisma J., Noetherianity up to symmetry, 2013, arXiv: 1310.1705
[11] Draisma J., Eggermont R. H., Krone R., Leykin A., Noetherianity for infinite-dimensional toric varieties, 2013, arXiv: 1306.0828
[12] Draisma J., Krasilnikov A., $\mathrm{Sym}(\mathbb N )$-invariant ideals in a certain subalgebra of a polynomial algebra, In preparation
[13] Draisma J., Kuttler J., “On the ideals of equivariant tree models”, Math. Ann., 344 (2009), 619–644 | DOI | MR | Zbl
[14] Draisma J., Kuttler J., “Bounded-rank tensors are defined in bounded degree”, Duke Math. J., 163:1 (2014), 1–266 | DOI | MR
[15] Hillar C. J., Martín del Campo A., “Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals”, J. Symbol. Comput., 50 (2013), 314–334 | DOI | MR | Zbl
[16] Hillar C. J., Sullivant S., “Finite Gröbner bases in infinite dimensional polynomial rings and applications”, Adv. Math., 229 (2012), 1–25 | DOI | MR | Zbl
[17] Vaughan-Lee M. R., “Abelian-by-nilpotent varieties of Lie algebras”, J. London Math. Soc. (2), 11 (1975), 263–265 | DOI | MR
[18] Vaughan-Lee M. R., “Abelian by nilpotent varieties”, Quart. J. Math. Oxford Ser. (2), 21 (1970), 193–202 | DOI | MR | Zbl