Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a field and let $\mathbb N=\{1,2,\dots\}$ be the set of all positive integers. Let $R_n=K[x_{ij}\mid1\le i\le n,\ j\in\mathbb N]$ be the ring of polynomials in $x_{ij}$ ($1\le i\le n$, $j\in\mathbb N$) over $K$. Let $\mathrm S_n=\mathrm{Sym}(\{1,2,\dots,n\})$ and $\mathrm{Sym}(\mathbb N)$ be the groups of permutations of the sets $\{1,2,\dots,n\}$ and $\mathbb N$, respectively. Then $\mathrm S_n$ and $\mathrm{Sym}(\mathbb N)$ act on $R_n$ in a natural way: $\tau(x_{ij})=x_{\tau(i)j}$ and $\sigma(x_{ij})=x_{i\sigma(j)}$, for all $i\in\{1,2,\dots,n\}$ and $j\in\mathbb N$, $\tau\in\mathrm S_n$ and $\sigma\in\mathrm{Sym}(\mathbb N)$. Let $\bar R_n$ be the subalgebra of ($\mathrm S_n$-)symmetric polynomials in $R_n$, i.e., $$ \bar R_n=\{f\in R_n\mid\tau(f)=f\ \text{for each}\ \tau\in\mathrm S_n\}. $$ An ideal $I$ in $\bar R_n$ is called $\mathrm{Sym}(\mathbb N)$-invariant if $\sigma(I)=I$ for each $\sigma\in\mathrm{Sym}(\mathbb N)$. In 1992, the second author proved that if $\mathrm{char}(K)=0$ or $\mathrm{char}(K)=p>n$, then every $\mathrm{Sym}(\mathbb N)$-invariant ideal in $\bar R_n$ is finitely generated (as such). In this note, we prove that this is not the case if $\mathrm{char}(K)=p\le n$. We also survey some results about $\mathrm{Sym}(\mathbb N)$-invariant ideals in polynomial algebras and some related topics.
@article{FPM_2013_18_3_a5,
     author = {E. A. da Costa and A. N. Krasilnikov},
     title = {Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/}
}
TY  - JOUR
AU  - E. A. da Costa
AU  - A. N. Krasilnikov
TI  - Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 69
EP  - 76
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/
LA  - ru
ID  - FPM_2013_18_3_a5
ER  - 
%0 Journal Article
%A E. A. da Costa
%A A. N. Krasilnikov
%T Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 69-76
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/
%G ru
%F FPM_2013_18_3_a5
E. A. da Costa; A. N. Krasilnikov. Symmetric polynomials and nonfinitely generated $\mathrm{Sym}(\mathbb N)$-invariant ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 69-76. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a5/

[1] Deryabina G. S., Krasilnikov A. N., “O razreshimykh gruppakh eksponenty 4”, Sib. mat. zhurn., 44:1 (2003), 69–72 | MR | Zbl

[2] Krasilnikov A. N., “O tozhdestvakh trianguliruemykh matrichnykh predstavlenii grupp”, Tr. MMO, 52, 1989, 229–245 | MR | Zbl

[3] Krasilnikov A. N., “O konechnosti bazisa tozhdestv grupp s nilpotentnym kommutantom”, Izv. AN SSSR. Ser. mat., 54:6 (1990), 1181–1195 | MR | Zbl

[4] Krasilnikov A. N., “O tozhdestvakh algebr Li s nilpotentnym kommutantom nad polem konechnoi kharakteristiki”, Mat. zametki, 51:3 (1992), 47–52 | MR | Zbl

[5] Aschenbrenner M., Hillar C. J., “Finite generation of symmetric ideals”, Trans. Am. Math. Soc., 359 (2007), 5171–5192 | DOI | MR | Zbl

[6] Brouwer A. E., Draisma J., “Equivariant Gröbner bases and the Gaussian two-factor model”, Math. Comp., 80 (2011), 1123–1133 | DOI | MR | Zbl

[7] Cohen D. E., “On the laws of a metabelian variety”, J. Algebra, 5 (1967), 267–273 | DOI | MR | Zbl

[8] Cohen D. E., “Closure relations, Buchberger's algorithm, and polynomials in infinitely many variables”, Computation Theory and Logic, Lect. Notes Comput. Sci., 270, Springer, Berlin, 1987, 78–87 | DOI | MR

[9] Draisma J., “Finiteness for the $k$-factor model and chirality varieties”, Adv. Math., 223 (2010), 243–256 | DOI | MR | Zbl

[10] Draisma J., Noetherianity up to symmetry, 2013, arXiv: 1310.1705

[11] Draisma J., Eggermont R. H., Krone R., Leykin A., Noetherianity for infinite-dimensional toric varieties, 2013, arXiv: 1306.0828

[12] Draisma J., Krasilnikov A., $\mathrm{Sym}(\mathbb N )$-invariant ideals in a certain subalgebra of a polynomial algebra, In preparation

[13] Draisma J., Kuttler J., “On the ideals of equivariant tree models”, Math. Ann., 344 (2009), 619–644 | DOI | MR | Zbl

[14] Draisma J., Kuttler J., “Bounded-rank tensors are defined in bounded degree”, Duke Math. J., 163:1 (2014), 1–266 | DOI | MR

[15] Hillar C. J., Martín del Campo A., “Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals”, J. Symbol. Comput., 50 (2013), 314–334 | DOI | MR | Zbl

[16] Hillar C. J., Sullivant S., “Finite Gröbner bases in infinite dimensional polynomial rings and applications”, Adv. Math., 229 (2012), 1–25 | DOI | MR | Zbl

[17] Vaughan-Lee M. R., “Abelian-by-nilpotent varieties of Lie algebras”, J. London Math. Soc. (2), 11 (1975), 263–265 | DOI | MR

[18] Vaughan-Lee M. R., “Abelian by nilpotent varieties”, Quart. J. Math. Oxford Ser. (2), 21 (1970), 193–202 | DOI | MR | Zbl