Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_3_a11, author = {A. A. Tuganbaev}, title = {Extensions of automorphisms of submodules}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {179--198}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a11/} }
A. A. Tuganbaev. Extensions of automorphisms of submodules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 179-198. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a11/
[1] Tuganbaev A. A., “Koltsa, nad kotorymi vse tsiklicheskie moduli vpolne tselozamknuty”, Diskret. mat., 23:3 (2011), 120–137 | DOI | MR | Zbl
[2] Tuganbaev A. A., “Avtomorfizmy podmodulei i ikh prodolzhenie”, Diskret. mat., 25:1 (2013), 144–151 | DOI | MR | Zbl
[3] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Austral. Math. Soc., 79:3 (2005), 2265–2271 | DOI | MR
[4] Eisenbud D., Griffith P., “Serial rings”, J. Algebra, 17 (1971), 389–400 | DOI | MR | Zbl
[5] Er N., Singh S., Srivastava A. K., “Rings and modules which are stable under automorphisms of their injectve hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl
[6] Goodearl K. R., Ring Theory, Marcel Dekker, New York, 1976 | MR | Zbl
[7] Goodearl K. R., Warfield R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[8] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Can. Math. Bull., 18:3 (1975), 359–366 | DOI | MR | Zbl
[9] Johnson R. E., Wong F. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl
[10] Lam T. Y., Execises in Classical Ring Theory, Springer, New York, 1995 | MR
[11] Lee T. K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 12:2 (2013), 1250159, 9 pp. | DOI | MR | Zbl
[12] Lenagan T. H., “Bounded hereditary Noetherian prime rings”, J. London Math. Soc., 6 (1973), 241–246 | DOI | MR | Zbl
[13] Mohamed S. H., Müller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[14] Singh S., “Modules over hereditary Noetherian prime rings”, Can. J. Math., 27:4 (1975), 867–883 | DOI | MR | Zbl
[15] Singh S., Srivastava A. K., “Rings of invariant module type and automorphism-invariant modules”, Ring Theory and Its Applications, Volume in honor of T. Y. Lam, Contemp. Math., Amer. Math. Soc., Providence, 2014
[16] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28:2 (1974), 291–310 | DOI | MR | Zbl
[17] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl
[18] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl