Extensions of automorphisms of submodules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 179-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study modules $M$ such that all automorphisms of submodules in $M$ can be extended to endomorphisms (automorphisms) of $M$.
@article{FPM_2013_18_3_a11,
     author = {A. A. Tuganbaev},
     title = {Extensions of automorphisms of submodules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {179--198},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a11/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Extensions of automorphisms of submodules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 179
EP  - 198
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a11/
LA  - ru
ID  - FPM_2013_18_3_a11
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Extensions of automorphisms of submodules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 179-198
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a11/
%G ru
%F FPM_2013_18_3_a11
A. A. Tuganbaev. Extensions of automorphisms of submodules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 179-198. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a11/

[1] Tuganbaev A. A., “Koltsa, nad kotorymi vse tsiklicheskie moduli vpolne tselozamknuty”, Diskret. mat., 23:3 (2011), 120–137 | DOI | MR | Zbl

[2] Tuganbaev A. A., “Avtomorfizmy podmodulei i ikh prodolzhenie”, Diskret. mat., 25:1 (2013), 144–151 | DOI | MR | Zbl

[3] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Austral. Math. Soc., 79:3 (2005), 2265–2271 | DOI | MR

[4] Eisenbud D., Griffith P., “Serial rings”, J. Algebra, 17 (1971), 389–400 | DOI | MR | Zbl

[5] Er N., Singh S., Srivastava A. K., “Rings and modules which are stable under automorphisms of their injectve hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl

[6] Goodearl K. R., Ring Theory, Marcel Dekker, New York, 1976 | MR | Zbl

[7] Goodearl K. R., Warfield R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[8] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Can. Math. Bull., 18:3 (1975), 359–366 | DOI | MR | Zbl

[9] Johnson R. E., Wong F. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl

[10] Lam T. Y., Execises in Classical Ring Theory, Springer, New York, 1995 | MR

[11] Lee T. K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 12:2 (2013), 1250159, 9 pp. | DOI | MR | Zbl

[12] Lenagan T. H., “Bounded hereditary Noetherian prime rings”, J. London Math. Soc., 6 (1973), 241–246 | DOI | MR | Zbl

[13] Mohamed S. H., Müller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[14] Singh S., “Modules over hereditary Noetherian prime rings”, Can. J. Math., 27:4 (1975), 867–883 | DOI | MR | Zbl

[15] Singh S., Srivastava A. K., “Rings of invariant module type and automorphism-invariant modules”, Ring Theory and Its Applications, Volume in honor of T. Y. Lam, Contemp. Math., Amer. Math. Soc., Providence, 2014

[16] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28:2 (1974), 291–310 | DOI | MR | Zbl

[17] Tuganbaev A., Semidistributive Modules and Rings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl

[18] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl