Representations of Gelfand--Graev type for the unitriangular group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 161-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the analog of Gelfand–Graev representations for the unitriangular group. We obtain the decomposition into a sum of irreducible representations, prove that these representations are multiplicity free, and calculate the Hecke algebra.
@article{FPM_2013_18_3_a10,
     author = {A. N. Panov},
     title = {Representations of {Gelfand--Graev} type for the unitriangular group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--178},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a10/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Representations of Gelfand--Graev type for the unitriangular group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 161
EP  - 178
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a10/
LA  - ru
ID  - FPM_2013_18_3_a10
ER  - 
%0 Journal Article
%A A. N. Panov
%T Representations of Gelfand--Graev type for the unitriangular group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 161-178
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a10/
%G ru
%F FPM_2013_18_3_a10
A. N. Panov. Representations of Gelfand--Graev type for the unitriangular group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 3, pp. 161-178. http://geodesic.mathdoc.fr/item/FPM_2013_18_3_a10/

[1] Gelfand I. M., Graev M. I., “Kategorii predstavlenii grupp i zadacha o klassifikatsii neprivodimykh predstavlenii”, DAN SSSR, 146 (1962), 757–760 | MR

[2] Gelfand I. M., Graev M. I., “Konstruktsii neprivodimykh predstavlenii prostykh algebraicheskikh grupp nad konechnym polem”, DAN SSSR, 147 (1962), 529–532 | MR

[3] Diksme Zh., Universalnye obërtyvayuschie algebry, Mir, M., 1978 | MR

[4] Ignatev M. V., Panov A. N., “Koprisoedinënnye orbity gruppy $\mathrm{UT}(7,K)$”, Fundam. i prikl. mat., 13:5 (2007), 127–159 | MR

[5] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17:4 (1962), 57–110 | MR | Zbl

[6] Kirillov A. A., Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002

[7] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[8] André C. A. M., “Basic characters of the unitriangular group”, J. Algebra, 175 (1995), 287–319 | DOI | MR | Zbl

[9] André C. A. M., “On the coadjoint orbits of the unitriangular group”, J. Algebra, 180 (1995), 587–630 | DOI | MR

[10] André C. A. M., “The regular character of the unitriangular group”, J. Algebra, 201 (1998), 1–52 | DOI | MR | Zbl

[11] André C. A. M., “Basic characters of the unitriangular group (for arbitrary primes)”, Proc. Am. Math. Soc., 130 (2002), 1943–1954 | DOI | MR | Zbl

[12] André C. A. M., “Hecke algebra for the basic representations of the unitriangular group”, Proc. Am. Math. Soc., 132 (2003), 987–996 | DOI | MR

[13] Isaacs I. M., Karagueuzian D., “Conjuracy in groups of upper triangular matrices”, J. Algebra, 202 (1998), 704–711 | DOI | MR | Zbl

[14] Kazhdan D., “Proof of Springer's hypothesis”, Israel J. Math., 28 (1977), 272–286 | DOI | MR | Zbl

[15] Panov A. N., The orbit method for unipotent groups over finite field, arXiv: 1212.1980

[16] Sangroniz J., “Characters of algebra groups and unitriangular groups”, Finite Groups, Walter de Gruyter, Berlin, 2004, 335–349 | MR | Zbl

[17] Yokonuma T., “Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini”, C. R. Acad. Sci. Paris, 264 (1967), 344–347 | MR | Zbl