Enumeration of irreducible contact graphs on the sphere
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 125-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, using the computer, are enumerated all locally-rigid packings by $N$ congruent circles (spherical caps) on the unit sphere $\mathbb S^2$ with $N12$. This is equivalent to the enumeration of irreducible spherical contact graphs.
@article{FPM_2013_18_2_a9,
     author = {O. R. Musin and A. S. Tarasov},
     title = {Enumeration of irreducible contact graphs on the sphere},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--145},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a9/}
}
TY  - JOUR
AU  - O. R. Musin
AU  - A. S. Tarasov
TI  - Enumeration of irreducible contact graphs on the sphere
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 125
EP  - 145
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a9/
LA  - ru
ID  - FPM_2013_18_2_a9
ER  - 
%0 Journal Article
%A O. R. Musin
%A A. S. Tarasov
%T Enumeration of irreducible contact graphs on the sphere
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 125-145
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a9/
%G ru
%F FPM_2013_18_2_a9
O. R. Musin; A. S. Tarasov. Enumeration of irreducible contact graphs on the sphere. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 125-145. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a9/

[1] Feiesh Tot L., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958

[2] Aigner M., Ziegler G. M., Proofs from THE BOOK, Springer, Berlin, 1998, 2002 | Zbl

[3] Anstreicher K., “The thirteen spheres: A new proof”, Discrete Comput. Geom., 31 (2004), 613–625 | DOI | MR | Zbl

[4] Barg A., Musin O. R., “Codes in spherical caps”, Adv. Math. Commun., 1 (2007), 131–149 | DOI | MR | Zbl

[5] Boyvalenkov P., Dodunekov S., Musin O. R., “A survey on the kissing numbers”, Serdica Math. J., 38 (2012), 507–522 | MR

[6] Böröczky K., “The problem of Tammes for $n=11$”, Stud. Sci. Math. Hungar., 18 (1983), 165–171 | MR | Zbl

[7] Böröczky K., “The Newton–Gregory problem revisited”, Discrete Geometry, ed. A. Bezdek, Marcel Dekker, New York, 2003, 103–110 | DOI | MR | Zbl

[8] Böröczky K., Szabó L., “Arrangements of 13 points on a sphere”, Discrete Geometry, ed. A. Bezdek, Marcel Dekker, New York, 2003, 111–184 | MR | Zbl

[9] Böröczky K., Szabó L., “Arrangements of 14, 15, 16 and 17 points on a sphere”, Stud. Sci. Math. Hungar., 40 (2003), 407–421 | MR | Zbl

[10] Brass P., Moser W. O. J., Pach J., Research Problems in Discrete Geometry, Springer, Berlin, 2005 | MR

[11] Brinkmann G., McKay B. D., Fast generation of planar graphs, http://cs.anu.edu.au/~bdm/papers/plantri-full.pdf

[12] Conway J. H., Sloane N. J. A., Sphere Packings, Lattices, and Groups, Springer, New York, 1999 | MR | Zbl

[13] Danzer L., “Finite point-sets on $\mathbf S^2$ with minimum distance as large as possible”, Discrete Math., 60 (1986), 3–66 | DOI | MR | Zbl

[14] Donev A., Torquato S., Stillinger F. H., Connelly R., “Jamming in hard sphere and disk packings”, J. Appl. Phys., 95 (2004), 989–999 | DOI

[15] Fejes Tóth L., “Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems”, Jber. Deutsch. Math.-Verein., 53 (1943), 66–68 | MR | Zbl

[16] Habicht W., van der Waerden B. L., “Lagerungen von Punkten auf der Kugel”, Math. Ann., 123 (1951), 223–234 | DOI | MR | Zbl

[17] Hopkins A. B., Stillinger F. H., Torquato S., “Densest local sphere-packing diversity: General concepts and application to two dimensions”, Phys. Rev. E, 81 (2010), 041305 | DOI | MR

[18] Hsiang W.-Y., Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture, World Scientific, River Edge, 2001 | MR | Zbl

[19] Leech J., “The problem of the thirteen spheres”, Math. Gazette, 41 (1956), 22–23 | DOI | MR

[20] Maehara H., “Isoperimetric theorem for spherical polygons and the problem of 13 spheres”, Ryukyu Math. J., 14 (2001), 41–57 | MR | Zbl

[21] Maehara H., “The problem of thirteen spheres – a proof for undergraduates”, Eur. J. Combin., 28 (2007), 1770–1778 | DOI | MR | Zbl

[22] Musin O. R., “The problem of the twenty-five spheres”, Russ. Math. Surv., 58:4 (2003), 794–795 | DOI | MR | Zbl

[23] Musin O. R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35 (2006), 375–384 | DOI | MR | Zbl

[24] Musin O. R., “The one-sided kissing number in four dimensions”, Period. Math. Hungar., 53 (2006), 209–225 | DOI | MR | Zbl

[25] Musin O. R., “Bounds for codes by semidefinite programming”, Proc. Steklov Inst. Math., 263, 2008, 134–149 | DOI | MR | Zbl

[26] Musin O. R., “The kissing number in four dimensions”, Ann. Math., 168 (2008), 1–32 | DOI | MR | Zbl

[27] Musin O. R., “Positive definite functions in distance geometry”, European Congress of Mathematics (Amsterdam, 14–18 July, 2008), EMS Publ., 2010, 115–134 | MR | Zbl

[28] Musin O. R., Tarasov A. S., “The strong thirteen spheres problem”, Discrete Comput. Geom., 48 (2012), 128–141 | DOI | MR | Zbl

[29] Plantri and fullgen, http://cs.anu.edu.au/~bdm/plantri/

[30] Robinson R. M., “Arrangement of 24 circles on a sphere”, Math. Ann., 144 (1961), 17–48 | DOI | MR | Zbl

[31] Schütte K., van der Waerden B. L., “Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand 1 Platz?”, Math. Ann., 123 (1951), 96–124 | DOI | MR | Zbl

[32] Schütte K., van der Waerden B. L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR | Zbl

[33] Tammes R. M. L., “On the origin number and arrangement of the places of exits on the surface of pollengrains”, Rec. Trv. Bot. Neerl., 27 (1930), 1–84

[34] Van der Waerden B. L., “Punkte auf der Kugel. Drei Zusätze”, Math. Ann., 125 (1952), 213–222 | DOI | MR | Zbl