Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_2_a6, author = {A. N. Maksimenko}, title = {$k$-neighborly faces of the {Boolean} quadric polytopes}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {95--103}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a6/} }
A. N. Maksimenko. $k$-neighborly faces of the Boolean quadric polytopes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 95-103. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a6/
[1] Barvinok A. I., Vershik A. M., “Vypuklye obolochki orbit predstavlenii konechnykh grupp i kombinatornaya optimizatsiya”, Funkts. analiz i ego pril., 22:3 (1988), 66–67 | MR | Zbl
[2] Bondarenko V. A., Brodskii A. G., “O sluchainykh $2$-smezhnostnykh $0/1$-mnogogrannikakh”, Diskret. mat., 20:1 (2008), 64–69 | DOI | MR | Zbl
[3] Maksimenko A. N., “Mnogogranniki zadachi o vypolnimosti yavlyayutsya granyami mnogogrannika zadachi kommivoyazhëra”, Diskret. analiz i issled. oper., 18:3 (2011), 76–83 | MR | Zbl
[4] Maksimenko A. N., “Ob universalnykh svoistvakh mnogogrannika razrezov”, Problemy teoreticheskoi kibernetiki, Mater. XVI mezhdunar. konf., Izd-vo Nizhegorodskogo gos. un-ta, 2011, 294–296
[5] Maksimenko A. N., “Ob affinnoi svodimosti kombinatornykh mnogogrannikov”, Dokl. RAN, 443:6 (2012), 661–663 | MR | Zbl
[6] Billera L. J., Sarangarajan A., “All $0$-$1$ polytopes are traveling salesman polytopes”, Combinatorica, 16:2 (1996), 175–188 | DOI | MR | Zbl
[7] Christof T., Reinelt G., “Decomposition and parallelization techniques for enumerating the facets of combinatorial polytopes”, Int. J. Comput. Geom. Appl., 11:4 (2001), 423–437 | DOI | MR | Zbl
[8] Deza M. M., Laurent M., Geometry of Cuts and Metrics, Springer, Berlin, 1997 | MR | Zbl
[9] Deza M. M., Laurent M., Poljak S., “The cut cone. III: On the role of triangle facets”, Graphs Combin., 8:2 (1992), 125–142 | DOI | MR | Zbl
[10] Fiorini S., Massar S., Pokutta S., Tiwary H. R., de Wolf R., Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds, 2011, arXiv: 1111.0837v3
[11] Gillmann R., $0/1$-Polytopes: Typical and Extremal Properties, PhD Thesis, TU Berlin, 2006 | Zbl
[12] Henk M., Richter-Gebert J., Ziegler G. M., “Basic properties of convex polytopes”, Handbook of Discrete and Computational Geometry, eds. J. E. Goodman, J. O'Rourke, Chapman and Hall/CRC, 2004, 355–382 | MR
[13] Onn S., “Geometry, complexity, and combinatorics of permutation polytopes”, J. Combin. Theory Ser. A, 64 (1993), 31–49 | DOI | MR | Zbl
[14] De Simone C., “The cut polytope and the Boolean quadric polytope”, Discrete Math., 79 (1990), 71–75 | DOI | MR | Zbl
[15] http://www.iwr.uni-heidelberg.de/groups/comopt/software/SMAPO/