Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_2_a2, author = {E. A. Zavalnyuk}, title = {Steiner ratio for the {Hadamard} surfaces of curvature at most~$k<0$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {35--51}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/} }
E. A. Zavalnyuk. Steiner ratio for the Hadamard surfaces of curvature at most~$k<0$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 35-51. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/
[1] Aleksandrov A. D., Zalgaller V. A., Dvumernye mnogoobraziya ogranichennoi krivizny, Tr. Mat. in-ta AN SSSR, 63, 1962 | MR | Zbl
[2] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004
[3] Zavalnyuk E. A., “Lokalnaya struktura minimalnykh setei v prostranstvakh Aleksandrova”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika (to appear)
[4] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, Uspekhi mat. nauk, 47:2 (1992), 53–115 | MR | Zbl
[5] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003
[6] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya rimanovykh mnogoobrazii”, Uspekhi mat. nauk, 55:6 (2000), 139–140 | DOI | MR | Zbl
[7] Mischenko V. A., “Otnoshenie Shteinera–Gromova rimanovykh mnogoobrazii”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika (to appear)
[8] Ovsyannikov Z. N., “Otnosheniya Shteinera, Shteinera–Gromova i subotnosheniya Shteinera dlya prostranstva kompaktov v evklidovoi ploskosti s rasstoyaniem Khausdorfa”, Fundament. i prikl. mat., 18:2 (2013), 157–165
[9] Pakhomova A. S., “Kriterii nepreryvnosti otnoshenii tipa Shteinera v prostranstve Gromova–Khausdorfa”, Mat. zametki (to appear)
[10] Pakhomova A. S., “Otsenki dlya subotnosheniya Shteinera i otnosheniya Shteinera–Gromova”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika (to appear)
[11] Cieslik D., “The Steiner ratio of $\mathcal L_{2k}^d$”, Discrete Appl. Math., 95 (1999), 217–221 | DOI | MR | Zbl
[12] Cieslik D., The Steiner Ratio, Kluwer Academic, Boston, 2001 | MR | Zbl
[13] Gao B., Du D. Z., Graham R. L., “A tight lower bound for the Steiner ratio in Minkowski planes”, Discrete Math., 142 (1995), 49–63 | DOI | MR | Zbl
[14] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[15] Graham R. L., Hwang F. K., “A remark on Steiner minimal trees”, Bull. Inst. Math. Acad. Sinica, 4 (1976), 177–182 | MR | Zbl
[16] Innami N., Kim B. H., “Steiner ratio for hyperbolic surfaces”, Proc. Japan Acad. Ser. A, 82:6 (2006), 77–80 | DOI | MR | Zbl
[17] Innami N., Naya S., “A comparison theorem for Steiner minimum trees in surfaces with curvature bounded below”, Tôhoku Math. J., 65:1 (2013), 131–157 | DOI | MR | Zbl
[18] Ivanov A., Tuzhilin A., “Differential calculus on the space of Steiner minimal trees in Riemannian manifolds”, Sb. Math., 192:6 (2001), 823–841 | DOI | MR | Zbl
[19] Ivanov A., Tuzhilin A., “The Steiner ratio Gilbert–Pollak conjecture is still open”, Algorithmica, 62:1–2 (2012), 630–632 | DOI | MR | Zbl
[20] Rubinstein J. H., Weng J. F., “Compression theorems and Steiner ratios on spheres”, J. Combin. Opt., 1 (1997), 67–78 | DOI | MR | Zbl