Steiner ratio for the Hadamard surfaces of curvature at most~$k0$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 35-51
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the Hadamard surfaces of curvature at most $k$ are investigated, which are a particular case of Alexandrov surfaces. It was shown that the total angle at the points of an Hadamard surface is not less than $2\pi$. The Steiner ratio of an Hadamard surface was obtained for the case where the surface is unbounded and $k0$.
@article{FPM_2013_18_2_a2,
author = {E. A. Zavalnyuk},
title = {Steiner ratio for the {Hadamard} surfaces of curvature at most~$k<0$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {35--51},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/}
}
E. A. Zavalnyuk. Steiner ratio for the Hadamard surfaces of curvature at most~$k<0$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 35-51. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/