Steiner ratio for the Hadamard surfaces of curvature at most~$k0$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 35-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Hadamard surfaces of curvature at most $k$ are investigated, which are a particular case of Alexandrov surfaces. It was shown that the total angle at the points of an Hadamard surface is not less than $2\pi$. The Steiner ratio of an Hadamard surface was obtained for the case where the surface is unbounded and $k0$.
@article{FPM_2013_18_2_a2,
     author = {E. A. Zavalnyuk},
     title = {Steiner ratio for the {Hadamard} surfaces of curvature at most~$k<0$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/}
}
TY  - JOUR
AU  - E. A. Zavalnyuk
TI  - Steiner ratio for the Hadamard surfaces of curvature at most~$k<0$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 35
EP  - 51
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/
LA  - ru
ID  - FPM_2013_18_2_a2
ER  - 
%0 Journal Article
%A E. A. Zavalnyuk
%T Steiner ratio for the Hadamard surfaces of curvature at most~$k<0$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 35-51
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/
%G ru
%F FPM_2013_18_2_a2
E. A. Zavalnyuk. Steiner ratio for the Hadamard surfaces of curvature at most~$k<0$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 35-51. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a2/