Selection of a~metric for the nearest neighbor entropy estimators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 209-227

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of improving the efficiency of the nonparametric entropy estimation for a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space of right-sided infinite sequences drawn from a finite alphabet. The new metric has a parameter which is a nonincreasing function. We prove that, under certain conditions, our estimators have a small variance and show that a special selection of the metric parameters reduces the estimator's bias.
@article{FPM_2013_18_2_a16,
     author = {E. A. Timofeev},
     title = {Selection of a~metric for the nearest neighbor entropy estimators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--227},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a16/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Selection of a~metric for the nearest neighbor entropy estimators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 209
EP  - 227
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a16/
LA  - ru
ID  - FPM_2013_18_2_a16
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Selection of a~metric for the nearest neighbor entropy estimators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 209-227
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a16/
%G ru
%F FPM_2013_18_2_a16
E. A. Timofeev. Selection of a~metric for the nearest neighbor entropy estimators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a16/