Selection of a~metric for the nearest neighbor entropy estimators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 209-227
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of improving the efficiency of the nonparametric entropy estimation for a stationary ergodic process. Our approach is based on the nearest-neighbor distances. We propose a broad class of metrics on the space of right-sided infinite sequences drawn from a finite alphabet. The new metric has a parameter which is a nonincreasing function. We prove that, under certain conditions, our estimators have a small variance and show that a special selection of the metric parameters reduces the estimator's bias.
@article{FPM_2013_18_2_a16,
author = {E. A. Timofeev},
title = {Selection of a~metric for the nearest neighbor entropy estimators},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {209--227},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a16/}
}
E. A. Timofeev. Selection of a~metric for the nearest neighbor entropy estimators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a16/