An algorithm for cartographic generalization that preserves global topology
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales.
@article{FPM_2013_18_2_a0,
     author = {V. V. Alexeev and V. G. Bogaevskaya and M. M. Preobrazhenskaya and A. Yu. Ukhalov and H. Edelsbrunner and O. P. Yakimova},
     title = {An algorithm for cartographic generalization that preserves global topology},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/}
}
TY  - JOUR
AU  - V. V. Alexeev
AU  - V. G. Bogaevskaya
AU  - M. M. Preobrazhenskaya
AU  - A. Yu. Ukhalov
AU  - H. Edelsbrunner
AU  - O. P. Yakimova
TI  - An algorithm for cartographic generalization that preserves global topology
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 5
EP  - 12
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/
LA  - ru
ID  - FPM_2013_18_2_a0
ER  - 
%0 Journal Article
%A V. V. Alexeev
%A V. G. Bogaevskaya
%A M. M. Preobrazhenskaya
%A A. Yu. Ukhalov
%A H. Edelsbrunner
%A O. P. Yakimova
%T An algorithm for cartographic generalization that preserves global topology
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 5-12
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/
%G ru
%F FPM_2013_18_2_a0
V. V. Alexeev; V. G. Bogaevskaya; M. M. Preobrazhenskaya; A. Yu. Ukhalov; H. Edelsbrunner; O. P. Yakimova. An algorithm for cartographic generalization that preserves global topology. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/

[1] Berlyant A. M., Musin O. R., Sobchuk T. V., Kartograficheskaya generalizatsiya i teoriya fraktalov, M., 1988

[2] Dey T. K., Edelsbrunner H., Guha S., Nekhayev D. V., “Topology preserving edge contraction”, Publ. Inst. Math. (Beograd) (N.S.), 66 (1999), 23–45 | MR

[3] Fritsch E., Use of Whirlpool algorithm for ADBS data generalization, ODBS meeting, 1999

[4] Garland M., Heckbert P. S., “Surface simplification using quadric error metrics”, SIGGRAPH' 97, Proc. 24th Ann. Conf. Comput. Graphics, Addison-Wesley, New York, 1997, 209–216 | DOI

[5] Li Z., Openshaw S., “Algorithms for automated line generalization based on a natural principle of objective generalization”, Internat. J. Geographical Inform. Systems, 6:5 (1992), 373–389 | DOI

[6] Thomas D. M., Natarajan V., Bonneau G.-P., “Link conditions for simplifying meshes with embedded structures”, IEEE Trans. Vis. Comput. Graphics, 17 (2011), 1007–1019 | DOI

[7] Vivodtzev F., Bonneau G.-P., Le Texier P., “Topology preserving simplification of 2D non-manifold meshes with embedded structures”, Visual Computer, 21 (2005), 679–688 | DOI