Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_2_a0, author = {V. V. Alexeev and V. G. Bogaevskaya and M. M. Preobrazhenskaya and A. Yu. Ukhalov and H. Edelsbrunner and O. P. Yakimova}, title = {An algorithm for cartographic generalization that preserves global topology}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {5--12}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/} }
TY - JOUR AU - V. V. Alexeev AU - V. G. Bogaevskaya AU - M. M. Preobrazhenskaya AU - A. Yu. Ukhalov AU - H. Edelsbrunner AU - O. P. Yakimova TI - An algorithm for cartographic generalization that preserves global topology JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 5 EP - 12 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/ LA - ru ID - FPM_2013_18_2_a0 ER -
%0 Journal Article %A V. V. Alexeev %A V. G. Bogaevskaya %A M. M. Preobrazhenskaya %A A. Yu. Ukhalov %A H. Edelsbrunner %A O. P. Yakimova %T An algorithm for cartographic generalization that preserves global topology %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 5-12 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/ %G ru %F FPM_2013_18_2_a0
V. V. Alexeev; V. G. Bogaevskaya; M. M. Preobrazhenskaya; A. Yu. Ukhalov; H. Edelsbrunner; O. P. Yakimova. An algorithm for cartographic generalization that preserves global topology. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a0/
[1] Berlyant A. M., Musin O. R., Sobchuk T. V., Kartograficheskaya generalizatsiya i teoriya fraktalov, M., 1988
[2] Dey T. K., Edelsbrunner H., Guha S., Nekhayev D. V., “Topology preserving edge contraction”, Publ. Inst. Math. (Beograd) (N.S.), 66 (1999), 23–45 | MR
[3] Fritsch E., Use of Whirlpool algorithm for ADBS data generalization, ODBS meeting, 1999
[4] Garland M., Heckbert P. S., “Surface simplification using quadric error metrics”, SIGGRAPH' 97, Proc. 24th Ann. Conf. Comput. Graphics, Addison-Wesley, New York, 1997, 209–216 | DOI
[5] Li Z., Openshaw S., “Algorithms for automated line generalization based on a natural principle of objective generalization”, Internat. J. Geographical Inform. Systems, 6:5 (1992), 373–389 | DOI
[6] Thomas D. M., Natarajan V., Bonneau G.-P., “Link conditions for simplifying meshes with embedded structures”, IEEE Trans. Vis. Comput. Graphics, 17 (2011), 1007–1019 | DOI
[7] Vivodtzev F., Bonneau G.-P., Le Texier P., “Topology preserving simplification of 2D non-manifold meshes with embedded structures”, Visual Computer, 21 (2005), 679–688 | DOI