One problem on geometric Ramsey numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 171-180

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an overview of results on the Ramsey distance number $R_\mathrm{NEH}(s,t,d)$. This value shows the frequency of the following event: a graph with a fixed number of vertices has an induced subgraph isomorphic to a distance graph in a space of certain dimension.
@article{FPM_2013_18_1_a9,
     author = {M. V. Titova},
     title = {One problem on geometric {Ramsey} numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a9/}
}
TY  - JOUR
AU  - M. V. Titova
TI  - One problem on geometric Ramsey numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 171
EP  - 180
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a9/
LA  - ru
ID  - FPM_2013_18_1_a9
ER  - 
%0 Journal Article
%A M. V. Titova
%T One problem on geometric Ramsey numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 171-180
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a9/
%G ru
%F FPM_2013_18_1_a9
M. V. Titova. One problem on geometric Ramsey numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 171-180. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a9/