Almost primitive elements of free Lie algebras of small ranks
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a field, $X=\{x_1,\ldots,x_n\}$, and let $L(X)$ be the free Lie algebra over $K$ with the set $X$ of free generators. A. G. Kurosh proved that subalgebras of free nonassociative algebras are free, A. I. Shirshov proved that subalgebras of free Lie algebras are free. A subset $M$ of nonzero elements of the free Lie algebra $L(X)$ is said to be primitive if there is a set $Y$ of free generators of $L(X)$, $L(X)=L(Y)$, such that $M\subseteq Y$ (in this case we have $|Y|=|X|=n$). Matrix criteria for a subset of elements of free Lie algebras to be primitive and algorithms to construct complements of primitive subsets of elements with respect to sets of free generators have been constructed. A nonzero element $u$ of the free Lie algebra $L(X)$ is said to be almost primitive if $u$ is not a primitive element of the algebra $L(X)$, but $u$ is a primitive element of any proper subalgebra of $L(X)$ that contains it. A series of almost primitive elements of free Lie algebras has been constructed. In this paper, for free Lie algebras of rank $2$ criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed.
@article{FPM_2013_18_1_a5,
     author = {A. V. Klimakov},
     title = {Almost primitive elements of free {Lie} algebras of small ranks},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a5/}
}
TY  - JOUR
AU  - A. V. Klimakov
TI  - Almost primitive elements of free Lie algebras of small ranks
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 63
EP  - 74
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a5/
LA  - ru
ID  - FPM_2013_18_1_a5
ER  - 
%0 Journal Article
%A A. V. Klimakov
%T Almost primitive elements of free Lie algebras of small ranks
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 63-74
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a5/
%G ru
%F FPM_2013_18_1_a5
A. V. Klimakov. Almost primitive elements of free Lie algebras of small ranks. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a5/

[1] Zolotykh A. A., Mikhalëv A. A., “Rang elementa svobodnoi ($p$)-superalgebry Li”, Dokl. RAN, 334:6 (1994), 690–693 | MR | Zbl

[2] Klimakov A. V., “Pochti primitivnye elementy svobodnykh neassotsiativnykh (anti)kommutativnykh algebr malykh rangov”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 5, 19–24 | MR | Zbl

[3] Klimakov A. V., Mikhalëv A. A., “Pochti primitivnye elementy svobodnykh neassotsiativnykh algebr malykh rangov”, Fundament. i prikl. mat., 17:1 (2011/2012), 127–141 | MR

[4] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Mat. sb., 20(62):2 (1947), 239–262 | MR | Zbl

[5] Mikhalëv A. A., Mikhalëv A. V., Chepovskii A. A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. mat., 13:5 (2007), 171–192 | MR | Zbl

[6] Shirshov A. I., “Podalgebry svobodnykh lievykh algebr”, Mat. sb., 33(75):2 (1953), 441–452 | MR | Zbl

[7] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, Springer, Berlin, 2004 | MR | Zbl

[8] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Generic, almost primitive and test elements of free Lie algebras”, Proc. Am. Math. Soc., 130:5 (2002), 1303–1310 | DOI | MR | Zbl

[9] Mikhalev A. A., Yu J.-T., “Primitive, almost primitive, test, and $\Delta$-primitive elements of free algebras with the Nielsen–Schreier property”, J. Algebra, 228 (2000), 603–623 | DOI | MR | Zbl

[10] Mikhalev A. A., Zolotykh A. A., “Rank and primitivity of elements of free color Lie ($p$-)superalgebras”, Int. J. Algebra Comput., 4 (1994), 617–656 | DOI | MR

[11] Mikhalev A. A., Zolotykh A. A., Combinatorial Aspects of Lie Superalgebras, CRC Press, Boca Raton, 1995 | MR | Zbl