Representations of the strong endomorphism monoid of finite $n$-uniform hypergraphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 21-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, two exact representations of the strong endomorphism monoid of an arbitrary finite $n$-uniform hypergraph are described. It is proved that the strong endomorphism monoid of a finite $n$-uniform hypergraph is regular. We find all nonnegative integers $n$ such that $n$-uniform hypergraphs are determined by their strong endomorphisms.
@article{FPM_2013_18_1_a1,
     author = {E. A. Bondar and Yu. V. Zhuchok},
     title = {Representations of the strong endomorphism monoid of finite $n$-uniform hypergraphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {21--34},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a1/}
}
TY  - JOUR
AU  - E. A. Bondar
AU  - Yu. V. Zhuchok
TI  - Representations of the strong endomorphism monoid of finite $n$-uniform hypergraphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 21
EP  - 34
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a1/
LA  - ru
ID  - FPM_2013_18_1_a1
ER  - 
%0 Journal Article
%A E. A. Bondar
%A Yu. V. Zhuchok
%T Representations of the strong endomorphism monoid of finite $n$-uniform hypergraphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 21-34
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a1/
%G ru
%F FPM_2013_18_1_a1
E. A. Bondar; Yu. V. Zhuchok. Representations of the strong endomorphism monoid of finite $n$-uniform hypergraphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a1/

[1] Gluskin L. M., “Polugruppy izotonnykh preobrazovanii”, Uspekhi mat. nauk, 16:5(101) (1961), 157–162 | MR | Zbl

[2] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl

[3] Zhuchok Yu. V., “Endomorfizmi vidnoshen ekvivalentnosti”, Visn. Kiiv. univ. Ser. Fiz.-mat. nauki., 2007, no. 3, 22–26 | Zbl

[4] Zhuchok Yu. V., “Polugruppy endomorfizmov $2$-nilpotentnykh binarnykh otnoshenii”, Fundament. i prikl. mat., 14:6 (2008), 75–83 | MR

[5] Zhuchok Yu. V., “Polugruppy endomorfizmov nekotorykh svobodnykh proizvedenii”, Fundament. i prikl. mat., 17:3 (2011/2012), 51–60 | MR

[6] Zykov A. A., “Gipergrafy”, Uspekhi mat. nauk, 29:6(180) (1974), 89–154 | MR | Zbl

[7] Reshetnikov A. V., “Ob opredeleniyakh gomomorfizma gipergrafov”, Materialy Kh mezhdunar. sem. “Diskretnaya matematika i eë prilozheniya”, 2010, 325–328

[8] Fleisher V., “O spletenii monoidov s kategoriyami”, Tr. Akad. nauk ESSR, 35, 1986, 237–243 | MR

[9] Khvorostukhina E. V., “O gomomorfizmakh polugrupp endomorfizmov gipergrafov”, Izv. Saratovsk. un-ta. Ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 70–75

[10] Fan S., “On End-regular graphs”, Discrete Math., 159 (1996), 95–102 | DOI | MR | Zbl

[11] Fan S., “Graphs whose strong endomorphism monoids are regular”, Arch. Math., 73 (1999), 419–421 | DOI | MR | Zbl

[12] Fleischer V., Knauer U., “Endomorphism monoids of acts are wreath products of monoids with small categories”, Semigroups, Theory and Applications, Proc. Conf. (Oberwolfach/FRG 1986), Lect. Notes Math., 1320, Springer, Berlin, 1988, 84–96 | DOI | MR

[13] Knauer U., Nieporte M., “Endomorphisms of graphs. I. The monoid of strong endomorphisms”, Arch. Math., 52 (1989), 607–614 | DOI | MR | Zbl

[14] Molchanov V. A., “Semigroups of mappings on graphs”, Semigroup Forum, 27 (1983), 155–199 | DOI | MR | Zbl

[15] Wilkeit E., “Graphs with a regular endomorphism monoid”, Arch. Math., 66 (1996), 344–352 | DOI | MR | Zbl