On a~problem related to homomorphism groups in the theory of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 31-34
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, for any reduced Abelian group $A$ whose torsion-free rank is infinite, we construct a countable set $\mathfrak A(A)$ of Abelian groups connected with the group $A$ in a definite way and such that for any two different groups $B$ and $C$ from the set $\mathfrak A(A)$ the groups $B$ and $C$ are isomorphic but $\operatorname{Hom}(B, X)\cong\operatorname{Hom}(C, X)$ for any Abelian group $X$. The construction of such a set of Abelian groups is closely connected with Problem 34 from L. Fuchs' book “Infinite Abelian Groups”, Vol. 1.
@article{FPM_2012_17_8_a4,
author = {S. Ya. Grinshpon},
title = {On a~problem related to homomorphism groups in the theory of {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {31--34},
publisher = {mathdoc},
volume = {17},
number = {8},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/}
}
TY - JOUR AU - S. Ya. Grinshpon TI - On a~problem related to homomorphism groups in the theory of Abelian groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 31 EP - 34 VL - 17 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/ LA - ru ID - FPM_2012_17_8_a4 ER -
S. Ya. Grinshpon. On a~problem related to homomorphism groups in the theory of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 31-34. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/