On a~problem related to homomorphism groups in the theory of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 31-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for any reduced Abelian group $A$ whose torsion-free rank is infinite, we construct a countable set $\mathfrak A(A)$ of Abelian groups connected with the group $A$ in a definite way and such that for any two different groups $B$ and $C$ from the set $\mathfrak A(A)$ the groups $B$ and $C$ are isomorphic but $\operatorname{Hom}(B, X)\cong\operatorname{Hom}(C, X)$ for any Abelian group $X$. The construction of such a set of Abelian groups is closely connected with Problem 34 from L. Fuchs' book “Infinite Abelian Groups”, Vol. 1.
@article{FPM_2012_17_8_a4,
     author = {S. Ya. Grinshpon},
     title = {On a~problem related to homomorphism groups in the theory of {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
TI  - On a~problem related to homomorphism groups in the theory of Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 31
EP  - 34
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/
LA  - ru
ID  - FPM_2012_17_8_a4
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%T On a~problem related to homomorphism groups in the theory of Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 31-34
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/
%G ru
%F FPM_2012_17_8_a4
S. Ya. Grinshpon. On a~problem related to homomorphism groups in the theory of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 31-34. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a4/

[1] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[2] Hill P., “Two problems of Fuchs concerning tor and hom”, J. Algebra, 19 (1971), 379–383 | DOI | MR | Zbl