Local Abelian torsion-free groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 147-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation for $p$-local Abelian torsion-free groups of finite rank is obtained in terms of homomorphisms of $p$-adic modules of finite rank with fixed basis.
@article{FPM_2012_17_8_a14,
     author = {V. Kh. Farukshin},
     title = {Local {Abelian} torsion-free groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--152},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a14/}
}
TY  - JOUR
AU  - V. Kh. Farukshin
TI  - Local Abelian torsion-free groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 147
EP  - 152
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a14/
LA  - ru
ID  - FPM_2012_17_8_a14
ER  - 
%0 Journal Article
%A V. Kh. Farukshin
%T Local Abelian torsion-free groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 147-152
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a14/
%G ru
%F FPM_2012_17_8_a14
V. Kh. Farukshin. Local Abelian torsion-free groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 147-152. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a14/

[1] Krylov P. A., Mikhalëv A. V., Tuganbaev A. A., Svyazi abelevykh grupp i ikh kolets endomorfizmov, Tomsk, 2002

[2] Farukshin V. Kh., Endomorfizmy redutsirovannykh obobschënno primarnykh grupp bez krucheniya, Avtoreferat dis. $\dots$ kand. fiz.-mat. nauk, M., 1986

[3] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974; т. 2, 1977

[4] Fomin A. A., “Some mixed Abelian groups as modules over the ring of pseudo-rational numbers”, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser, Basel, 1999, 87–100 | MR | Zbl

[5] Fomin A. A., “Quotient divisible mixed groups”, Abelian Groups, Rings and Modules, Contemp. Math., 273, Amer. Math. Soc., 2001, 117–128 | DOI | MR | Zbl

[6] Murley C., “The classification of certain classes of torsion free Abelian groups”, Pacific J. Math., 40 (1972), 647–665 | DOI | MR | Zbl