Cascade connections and triangular products of linear automata
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 175-186
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note, we want to resume attention to the basics of triangular product of automata construction and to introduce the notion of linear automata complexity. It contains three main results. (1) For any two pure automata we consider the category of their cascade connections. It possesses the universal terminal object. This object is the wreath product of the automata. Hence, every cascade connection admits a natural embedding into wreath product of automata. (2) A similar theory is built for linear automata, where we also consider the category of cascade connections. It also has the terminal object. This object is the triangular product of linear automata. (3) Triangular products have various applications. This construction is used in linear automata decomposition theory, in the definition of complexity of a linear automaton. We consider a special linear complexity and give the rule for its calculation.
@article{FPM_2012_17_7_a9,
author = {B. Plotkin and T. Plotkin},
title = {Cascade connections and triangular products of linear automata},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {175--186},
publisher = {mathdoc},
volume = {17},
number = {7},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a9/}
}
TY - JOUR AU - B. Plotkin AU - T. Plotkin TI - Cascade connections and triangular products of linear automata JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 175 EP - 186 VL - 17 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a9/ LA - ru ID - FPM_2012_17_7_a9 ER -
B. Plotkin; T. Plotkin. Cascade connections and triangular products of linear automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 175-186. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a9/