Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_7_a9, author = {B. Plotkin and T. Plotkin}, title = {Cascade connections and triangular products of linear automata}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {175--186}, publisher = {mathdoc}, volume = {17}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a9/} }
TY - JOUR AU - B. Plotkin AU - T. Plotkin TI - Cascade connections and triangular products of linear automata JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 175 EP - 186 VL - 17 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a9/ LA - ru ID - FPM_2012_17_7_a9 ER -
B. Plotkin; T. Plotkin. Cascade connections and triangular products of linear automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 175-186. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a9/
[1] Arbib M. A. (ed.), Algebraic Theory of Machines, Languages, and Semigroups, Academic Press, New York, 1968 | MR | Zbl
[2] Eilenberg S., Automata, Languages and Machines, Academic Press, New York, 1976 | MR | Zbl
[3] Gecseg F., Products of Automata, EATCS Monogr. on TCS, Springer, Berlin, 1986 | MR | Zbl
[4] Gecseg F., Peak I., Algebraic Theory of Automata, Akademiai Kiado, 1972 | MR
[5] Holcombe M., Algebraic Automata Theory, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl
[6] Ito M., Algebraic Theory of Automata and Languages, World Scientific, 2004 | MR
[7] Kambites M., “On the Krohn–Rhodes complexity of semigroups of upper triangular matrices”, Int. J. Algebra Comput., 17:1 (2007), 187–201 | DOI | MR | Zbl
[8] Kambites M., Steinberg B., “Wreath product decompositions for triangular matrix semigroups”, Proc. Semigroups and Languages, Lisbon, 2005, 129–144 | MR
[9] Krohn K., Rhodes J., “Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines”, Trans. Am. Math. Soc., 116 (1965), 450–464 | DOI | MR | Zbl
[10] Krohn K., Rhodes J., “Complexity of finite semigroups”, Ann. Math., 2:88 (1968), 128–160 | DOI | MR | Zbl
[11] Krohn K., Rhodes J., Tilson B., “Lectures on finite semigroups”, Algebraic Theory of Machines, Languages and Semigroups, Academic Press, New York, 1968 | MR
[12] Plotkin B., Greenglaz L., Gvaramija A., Algebraic Structures in Automata and Databases Theory, World Scientific, Singapore, 1992 | MR | Zbl
[13] Plotkin B., Plotkin T., “An algebraic approach to knowledge bases informational equivalence”, Acta Appl. Math., 89 (2005), 109–134 | DOI | MR | Zbl
[14] Plotkin B. I., Vovsi S. M., Varieties of Representations of Groups, Zinatne, 1983 | MR | Zbl
[15] Rhodes J., Steinberg B., The $q$-Theory of Finite Semigroups, Monograph (to appear)
[16] Vovsi S. M., Triangular Products of Group Representations and Their Applications, Progress Math., 17, Birkhäuser, 1981 | MR | Zbl