Orthogonal graded completion of graded semiprime rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 117-150

Voir la notice de l'article provenant de la source Math-Net.Ru

For an associative $\mathrm{gr}$-semiprime ring $R$ with identity graded by a group, the orthogonal graded completion $O^\mathrm{gr}(R)$ is constructed. A criterion for the orthogonal completeness of the maximal right graded quotient ring $Q^\mathrm{gr}(R)$ is proved. The ring $Q^\mathrm{gr}(R)$ need not be orthogonally complete, as opposed to the ungraded case.
@article{FPM_2012_17_7_a6,
     author = {A. L. Kanunnikov},
     title = {Orthogonal graded completion of graded semiprime rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--150},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Orthogonal graded completion of graded semiprime rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 117
EP  - 150
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/
LA  - ru
ID  - FPM_2012_17_7_a6
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Orthogonal graded completion of graded semiprime rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 117-150
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/
%G ru
%F FPM_2012_17_7_a6
A. L. Kanunnikov. Orthogonal graded completion of graded semiprime rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 117-150. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/