Orthogonal graded completion of graded semiprime rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 117-150
Voir la notice de l'article provenant de la source Math-Net.Ru
For an associative $\mathrm{gr}$-semiprime ring $R$ with identity graded by a group, the orthogonal graded completion $O^\mathrm{gr}(R)$ is constructed. A criterion for the orthogonal completeness of the maximal right graded quotient ring $Q^\mathrm{gr}(R)$ is proved. The ring $Q^\mathrm{gr}(R)$ need not be orthogonally complete, as opposed to the ungraded case.
@article{FPM_2012_17_7_a6,
author = {A. L. Kanunnikov},
title = {Orthogonal graded completion of graded semiprime rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {117--150},
publisher = {mathdoc},
volume = {17},
number = {7},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/}
}
A. L. Kanunnikov. Orthogonal graded completion of graded semiprime rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 117-150. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/