Orthogonal graded completion of graded semiprime rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 117-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an associative $\mathrm{gr}$-semiprime ring $R$ with identity graded by a group, the orthogonal graded completion $O^\mathrm{gr}(R)$ is constructed. A criterion for the orthogonal completeness of the maximal right graded quotient ring $Q^\mathrm{gr}(R)$ is proved. The ring $Q^\mathrm{gr}(R)$ need not be orthogonally complete, as opposed to the ungraded case.
@article{FPM_2012_17_7_a6,
     author = {A. L. Kanunnikov},
     title = {Orthogonal graded completion of graded semiprime rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--150},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Orthogonal graded completion of graded semiprime rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 117
EP  - 150
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/
LA  - ru
ID  - FPM_2012_17_7_a6
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Orthogonal graded completion of graded semiprime rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 117-150
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/
%G ru
%F FPM_2012_17_7_a6
A. L. Kanunnikov. Orthogonal graded completion of graded semiprime rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 117-150. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a6/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Faktorial, M., 2003

[2] Balaba I. N., “Koltsa chastnykh polupervichnykh graduirovannykh kolets”, Tr. mezhdunar. sem. “Universalnaya algebra i prilozheniya”, 2000, Volgograd, 21–28 | Zbl

[3] Balaba I. N., Kanunnikov A. L., Mikhalëv A. V., “Koltsa chastnykh graduirovannykh assotsiativnykh kolets. I”, Fundament. i prikl. mat., 17:2 (2011/2012), 3–74

[4] Beidar K. I., “Koltsa s obobschënnymi tozhdestvami. I”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1977, no. 2, 19–36 | MR

[5] Beidar K. I., “Koltsa chastnykh polupervichnykh kolets”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1978, no. 5, 36–43 | MR | Zbl

[6] Beidar K. I., Mikhalëv A. V., “Ortogonalnaya polnota i algebraicheskie sistemy”, Uspekhi mat. nauk, 40:6 (1985), 79–115 | MR | Zbl

[7] Beidar K. I., Mikhalëv A. V., “Funktor ortogonalnogo popolneniya”, Abelevy gruppy i moduli, 4, 1986, 3–19 | Zbl

[8] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 3, 46–50 | MR

[9] Kanunnikov A. L., “Graduirovannye varianty teoremy Goldi. II”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2013 (to appear)

[10] Lambek I., Koltsa i moduli, Faktorial, M., 2005

[11] Mikhalëv A. V., “Ortogonalno polnye mnogosortnye sistemy”, DAN SSSR, 289:6 (1986), 1304–1308 | MR

[12] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[13] Beidar K. I., Martindale W. S., Mikhalev A. V., Rings with Generalized Identities, Marcel Dekker, 1995 | MR

[14] Chuang C.-L., “Boolean valued models and semiprime rings”, Proc. Int. Conf. of Algebra in Memory of Prof. K. I. Beidar, 2005, 23–53 | MR

[15] Nastasesku C., Van Oystayen F., Graded Ring Theory, North-Holland, Amsterdam, 2004