Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 97-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish bounds for the number of occurrences of elements on segments of linear recurrence sequences of vectors over Galois rings. We use the method of exponential sums for this problem. We improve known results with the help of a new class of exponential sums.
@article{FPM_2012_17_7_a5,
     author = {O. V. Kamlovskii},
     title = {Improved bounds for the number of occurrences of elements in linear recurrence sequences over {Galois} rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a5/}
}
TY  - JOUR
AU  - O. V. Kamlovskii
TI  - Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 97
EP  - 115
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a5/
LA  - ru
ID  - FPM_2012_17_7_a5
ER  - 
%0 Journal Article
%A O. V. Kamlovskii
%T Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 97-115
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a5/
%G ru
%F FPM_2012_17_7_a5
O. V. Kamlovskii. Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 97-115. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a5/

[1] Kamlovskii O. V., “Otsenki chastot poyavleniya nulei v lineinykh rekurrentnykh posledovatelnostyakh vektorov”, Chebyshëvskii sb., 6:1 (2005), 135–146 | MR

[2] Kamlovskii O. V., “Chastotnye kharakteristiki lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Mat. sb., 200:4 (2009), 31–52 | DOI | MR | Zbl

[3] Kamlovskii O. V., “Metod Sidelnikova dlya otsenki chisla znakov na otrezkakh lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Mat. zametki, 91:3 (2012), 371–382 | DOI | MR | Zbl

[4] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundament. i prikl. mat., 6:4 (2000), 1083–1094 | MR | Zbl

[5] Knut D. E., Iskusstvo programmirovaniya, v. 2, Vilyams, M., 2000

[6] Korobov N. M., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, DAN SSSR, 88:4 (1953), 603–606 | MR | Zbl

[7] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 139–202 | MR | Zbl

[8] Mikhailov D. A., “Unitarnye polilineinye registry i ikh periody”, Diskret. mat., 14:1 (2002), 30–59 | DOI | MR | Zbl

[9] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskret. mat., 1:4 (1989), 123–139 | MR | Zbl

[10] Nechaev V. I., “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Tr. Mat. in-ta im. V. A. Steklova, 218, 1997, 335–342 | MR | Zbl

[11] Sidelnikov V. M., “Otsenki dlya chisla $r$-gramm na otrezke lineinoi rekurrentnoi posledovatelnosti”, Diskret. mat., 3:2 (1991), 87–95 | MR | Zbl

[12] Shparlinskii I. E., “O raspredelenii znachenii rekurrentnykh posledovatelnostei”, Problemy peredachi informatsii, 25:2 (1989), 46–53 | MR | Zbl

[13] Hu H., Feng D., Wu W., “Incomplete exponential sums over Galois rings with applications to some binary sequences derived from $\mathbb Z_{2^l}$”, IEEE Trans. Inform. Theory, 52:5 (2006), 2260–2265 | DOI | MR | Zbl

[14] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[15] McDonald B. R., Finite Rings with Identity, Marcel Dekker, New York, 1974 | MR | Zbl

[16] Niederreiter H., “Distribution properties of feedback shift register sequences”, Probl. Control Inform. Theory, 15:1 (1986), 19–34 | MR | Zbl

[17] Shanbhag A. G., Kumar P. V., Helleseth T., “Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some $q$-ary sequences”, IEEE Trans. Inform. Theory, 42:1 (1996), 250–254 | DOI | MR | Zbl