Local solarity of suns in normed linear spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with solarity of intersections of suns with bars (in particular, with closed balls and extreme hyperstrips) in normed linear spaces. A sun in a finite-dimensional $(BM)$-space (in particular, in $\ell^1(n)$) is shown to be monotone path connected. A nonempty intersection of an $\mathrm m$-connected set (in particular, a sun in a two-dimensional space or in a finite-dimensional $(BM)$-space) with a bar is shown to be a monotone path-connected sun. Similar results are obtained for boundedly compact subsets of infinite-dimensional spaces. A nonempty intersection of a monotone path-connected subset of a normed space with a bar is shown to be a monotone path-connected $\alpha$-sun.
@article{FPM_2012_17_7_a0,
     author = {A. R. Alimov},
     title = {Local solarity of suns in normed linear spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Local solarity of suns in normed linear spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 3
EP  - 14
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/
LA  - ru
ID  - FPM_2012_17_7_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Local solarity of suns in normed linear spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 3-14
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/
%G ru
%F FPM_2012_17_7_a0
A. R. Alimov. Local solarity of suns in normed linear spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 3-14. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/

[1] Alimov A. R., “Geometricheskoe stroenie chebyshëvskikh mnozhestv v $\ell^\infty(n)$”, Funkts. analiz i ego pril., 39:1 (2005), 1–10 | DOI | MR | Zbl

[2] Alimov A. R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. mat., 69:4 (2005), 3–18 | DOI | MR | Zbl

[3] Alimov A. R., “Sokhranenie approksimativnykh svoistv podmnozhestv chebyshëvskikh mnozhestv i solnts v $\ell^\infty(n)$”, Izv. RAN. Ser. mat., 70:5 (2006), 3–12 | DOI | MR | Zbl

[4] Alimov A. R., “Monotonnaya lineinaya svyaznost chebyshëvskikh mnozhestv v prostranstve $C(Q)$”, Mat. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl

[5] Alimov A. R., “Sokhranenie approksimativnykh svoistv chebyshëvskikh mnozhestv i solnts na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 4, 46–49 | MR

[6] Alimov A. R., “Monotonno lineino svyaznoe chebyshëvskoe mnozhestvo yavlyaetsya solntsem”, Mat. zametki, 91:2 (2012), 305–307 | DOI | Zbl

[7] Alimov A. R., “Ogranichennaya strogaya solnechnost strogikh solnts v prostranstve $C(Q)$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 6, 16–19 | MR

[8] Alimov A. R., Protasov V. Yu., “Otdelimost vypuklykh mnozhestv ekstremalnymi giperploskostyami”, Fundament. i prikl. mat., 17:4 (2011/2012), 3–12 | MR

[9] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Shtiintsa, Kishinëv, 1978 | MR

[10] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. mat., 68:4 (2004), 75–116 | DOI | MR | Zbl

[11] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi mat. nauk, 28:6(174) (1973), 3–66 | MR | Zbl

[12] Koscheev V. A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Mat. zametki, 19:2 (1976), 267–278 | MR | Zbl

[13] Tsarkov I. G., “Ogranichennye chebyshëvskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Mat. zametki, 36:1 (1984), 73–87 | MR | Zbl

[14] Brosowski B., Deutsch F., “On some geometric properties of suns”, J. Approx. Theory, 10:3 (1974), 245–267 | DOI | MR | Zbl

[15] Brosowski B., Deutsch F., Lambert J., Morris P. D., “Chebyshev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl

[16] Brown A. L., “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[17] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Proc. Cent. Math. Anal. Aust. Natl. Univ., 20 (1988), 1–15 | MR | Zbl

[18] Brown A. L., “Suns in polyhedral spaces”, Seminar of Math. Analysis, Proceedings (Univ. Malaga and Seville, Spain, Sept. 2002 – Feb. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Univ. Sevilla, Sevilla, 2003, 139–146 | MR | Zbl

[19] Dancer E., Sims B., “Weak star separability”, Bull. Austral. Math. Soc., 20:2 (1979), 253–257 | DOI | MR | Zbl

[20] Franchetti C., Roversi S., Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint No. 50139, Inst. Matematica Applicata “G. Sansone”, 1988 | MR

[21] Giles J. R., “The Mazur intersection problem”, J. Convex Anal., 13:3–4 (2006), 739–750 | MR | Zbl

[22] Giles J. R., Gregory D. A., Sims B., “Characterisation of normed linear spaces with Mazur's intersection property”, Bull. Austral. Math. Soc., 18 (1978), 105–123 | DOI | MR | Zbl

[23] Granero A. S., Jiménez-Sevilla M., Moreno J. P., “Intersections of closed balls and geometry of Banach spaces”, Extracta Math., 19:1 (2004), 55–92 | MR | Zbl

[24] Moreno J. P., Schneider R., “Continuity properties of the ball hull mapping”, Nonlinear Anal., 66 (2007), 914–925 | DOI | MR | Zbl

[25] Phelps R. R., “A representation theorem for bounded convex sets”, Proc. Amer. Math. Soc., 11 (1960), 976–983 | DOI | MR