Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_7_a0, author = {A. R. Alimov}, title = {Local solarity of suns in normed linear spaces}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--14}, publisher = {mathdoc}, volume = {17}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/} }
A. R. Alimov. Local solarity of suns in normed linear spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 3-14. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/
[1] Alimov A. R., “Geometricheskoe stroenie chebyshëvskikh mnozhestv v $\ell^\infty(n)$”, Funkts. analiz i ego pril., 39:1 (2005), 1–10 | DOI | MR | Zbl
[2] Alimov A. R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. mat., 69:4 (2005), 3–18 | DOI | MR | Zbl
[3] Alimov A. R., “Sokhranenie approksimativnykh svoistv podmnozhestv chebyshëvskikh mnozhestv i solnts v $\ell^\infty(n)$”, Izv. RAN. Ser. mat., 70:5 (2006), 3–12 | DOI | MR | Zbl
[4] Alimov A. R., “Monotonnaya lineinaya svyaznost chebyshëvskikh mnozhestv v prostranstve $C(Q)$”, Mat. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl
[5] Alimov A. R., “Sokhranenie approksimativnykh svoistv chebyshëvskikh mnozhestv i solnts na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 4, 46–49 | MR
[6] Alimov A. R., “Monotonno lineino svyaznoe chebyshëvskoe mnozhestvo yavlyaetsya solntsem”, Mat. zametki, 91:2 (2012), 305–307 | DOI | Zbl
[7] Alimov A. R., “Ogranichennaya strogaya solnechnost strogikh solnts v prostranstve $C(Q)$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 6, 16–19 | MR
[8] Alimov A. R., Protasov V. Yu., “Otdelimost vypuklykh mnozhestv ekstremalnymi giperploskostyami”, Fundament. i prikl. mat., 17:4 (2011/2012), 3–12 | MR
[9] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Shtiintsa, Kishinëv, 1978 | MR
[10] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. mat., 68:4 (2004), 75–116 | DOI | MR | Zbl
[11] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi mat. nauk, 28:6(174) (1973), 3–66 | MR | Zbl
[12] Koscheev V. A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Mat. zametki, 19:2 (1976), 267–278 | MR | Zbl
[13] Tsarkov I. G., “Ogranichennye chebyshëvskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Mat. zametki, 36:1 (1984), 73–87 | MR | Zbl
[14] Brosowski B., Deutsch F., “On some geometric properties of suns”, J. Approx. Theory, 10:3 (1974), 245–267 | DOI | MR | Zbl
[15] Brosowski B., Deutsch F., Lambert J., Morris P. D., “Chebyshev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl
[16] Brown A. L., “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[17] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Proc. Cent. Math. Anal. Aust. Natl. Univ., 20 (1988), 1–15 | MR | Zbl
[18] Brown A. L., “Suns in polyhedral spaces”, Seminar of Math. Analysis, Proceedings (Univ. Malaga and Seville, Spain, Sept. 2002 – Feb. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Univ. Sevilla, Sevilla, 2003, 139–146 | MR | Zbl
[19] Dancer E., Sims B., “Weak star separability”, Bull. Austral. Math. Soc., 20:2 (1979), 253–257 | DOI | MR | Zbl
[20] Franchetti C., Roversi S., Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint No. 50139, Inst. Matematica Applicata “G. Sansone”, 1988 | MR
[21] Giles J. R., “The Mazur intersection problem”, J. Convex Anal., 13:3–4 (2006), 739–750 | MR | Zbl
[22] Giles J. R., Gregory D. A., Sims B., “Characterisation of normed linear spaces with Mazur's intersection property”, Bull. Austral. Math. Soc., 18 (1978), 105–123 | DOI | MR | Zbl
[23] Granero A. S., Jiménez-Sevilla M., Moreno J. P., “Intersections of closed balls and geometry of Banach spaces”, Extracta Math., 19:1 (2004), 55–92 | MR | Zbl
[24] Moreno J. P., Schneider R., “Continuity properties of the ball hull mapping”, Nonlinear Anal., 66 (2007), 914–925 | DOI | MR | Zbl
[25] Phelps R. R., “A representation theorem for bounded convex sets”, Proc. Amer. Math. Soc., 11 (1960), 976–983 | DOI | MR