Local solarity of suns in normed linear spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with solarity of intersections of suns with bars (in particular, with closed balls and extreme hyperstrips) in normed linear spaces. A sun in a finite-dimensional $(BM)$-space (in particular, in $\ell^1(n)$) is shown to be monotone path connected. A nonempty intersection of an $\mathrm m$-connected set (in particular, a sun in a two-dimensional space or in a finite-dimensional $(BM)$-space) with a bar is shown to be a monotone path-connected sun. Similar results are obtained for boundedly compact subsets of infinite-dimensional spaces. A nonempty intersection of a monotone path-connected subset of a normed space with a bar is shown to be a monotone path-connected $\alpha$-sun.
@article{FPM_2012_17_7_a0,
     author = {A. R. Alimov},
     title = {Local solarity of suns in normed linear spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Local solarity of suns in normed linear spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 3
EP  - 14
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/
LA  - ru
ID  - FPM_2012_17_7_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Local solarity of suns in normed linear spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 3-14
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/
%G ru
%F FPM_2012_17_7_a0
A. R. Alimov. Local solarity of suns in normed linear spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 3-14. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a0/