Topological classification of M\"obius transformations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 175-183
Voir la notice de l'article provenant de la source Math-Net.Ru
Linear fractional transformations on the extended complex plane are classified up to topological conjugacy. Recall that two transformations $f$ and $g$ are called topologically conjugate if there exists a homeomorphism $h$ such that $g=h^{-1}\circ f\circ h$, in which $\circ$ is the composition of mappings.
@article{FPM_2012_17_6_a4,
author = {T. V. Rybalkina and V. V. Sergeichuk},
title = {Topological classification of {M\"obius} transformations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {175--183},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a4/}
}
TY - JOUR AU - T. V. Rybalkina AU - V. V. Sergeichuk TI - Topological classification of M\"obius transformations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 175 EP - 183 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a4/ LA - ru ID - FPM_2012_17_6_a4 ER -
T. V. Rybalkina; V. V. Sergeichuk. Topological classification of M\"obius transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 175-183. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a4/